
Sustainability 
indicators for 
crypto-assets 
Disclosures in accordance with
Article 66 (5) MiCAR.

This report was provided by Crypto Risk Metrics. 2025-12-24



Table of Content 

Preamble 4

Overview 4

Sustainability indicators according to MiCAR 66 (5) 5

Bitcoin 5

Dogecoin 8

Litecoin 12

Bitcoin Cash 14

Ethereum Classic Ether 18

Zcash 21

Solana SOL 25

Internet Computer Token 28

Filecoin 32

Ethereum Eth 38

Cardano ADA 39

Avalanche AVAX 42

Polkadot DOT 46

Algorand 51

Sui 53

Ripple XRP 55

Aptos Coin 60

Injective Token 61

Polygon POL 67

Celestia 71

Bittensor 73

Wrapped BTC 75

ChainLink Token 76

Aave Token 89

Uniswap 101

SHIBA INU 108

ENA 109

Pepe 110

Ondo 111

Arbitrum 113

Graph Token 115

Sustainability indicators according to MiCAR 66 (5) 2



OFFICIAL TRUMP 118

Render Token 121

FLOKI 124

Dao Maker 127

Sustainability indicators according to MiCAR 66 (5) 3



Preamble 

About the Crypto Asset Service Provider (CASP) 

Name of the CASP: CHECKSIG S.R.L. SOCIETA' BENEFIT 
Street and number: PIAZZA DEL LIBERTY, 8
City: MILANO
Country: Italy
LEI: 8156006C715AAACC5D19 

About this report 

This disclosure serves as evidence of compliance with the regulatory requirements of MiCAR 66 (5).
This  requirement  obliges  crypto  asset  service  providers  to  disclose  significant  adverse  factors
affecting  the  climate  and  the  environment.  In  particular,  this  disclosure  complies  with  the
requirements  of  “Commission  Regulation  (EU)  2025/422 of  December  17,  2024,  supplementing
Regulation (EU) 2023/1114 of the European Parliament and of the Council with regard to regulatory
technical  standards specifying the content,  methods and presentation of information relating to
sustainability indicators related to climate-related and other environmental impacts.“ The optional
information specified in Article 6, par. 8 (a) to (d) DR 2025/422 is not included.

This  report  is  valid  until  material  changes  occur  in  the  data,  which  will  result  in  an  immediate
adjustment of this report.

Overview 

This is an overview of the core indicator energy consumption but does not represent the reporting
according to MiCAR 66 (5). Please find the full disclosure below. 

# Crypto-Asset Name Crypto-Asset
FFG

Energy consumption (kWh per calendar
year)

1 Bitcoin V15WLZJMF 197,208,709,015.86

2 Dogecoin 35PLJP6J7 7,650,331,138.03

3 Litecoin D74JZ1VRD 1,168,181,999.72

4 Bitcoin Cash 919BF3W7L 1,157,903,253.93

5 Ethereum Classic Ether DGMQMFZD4 538,126,480.41

6 Zcash 7JPSSTXMS 322,297,411.65

7 Solana SOL 6QZ1LNC12 6,843,750.00

8 Internet Computer
Token 4DHTM5D7P 5,834,160.00

9 Filecoin S6702SWRZ 2,409,020.86

10 Ethereum Eth D5RG2FHH0 2,159,953.20

11 Cardano ADA 76QS7QCXB 813,103.20

12 Avalanche AVAX S6JCBF70N 809,757.63

13 Polkadot DOT SGD9NLTRG 630,720.00

14 Algorand K8S6W74KS 420,961.80
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# Crypto-Asset Name Crypto-Asset
FFG

Energy consumption (kWh per calendar
year)

15 Sui 64RFW3D8P 394,725.60

16 Ripple XRP 42PHJB2BS 299,632.54

17 Aptos Coin C4CQCGLH2 262,800.00

18 Injective Token 92M9B0DZ7 242,193.11

19 Polygon POL GB8DQ8DWN 96,015.65

20 Celestia M7NN4STH9 83,196.38

21 Bittensor LBQFC0FVK 25,228.80

22 Wrapped BTC Z1K7V8BV8 13,250.69

23 ChainLink Token 3R3J70FDR 5,717.43

24 Aave Token H618RN577 2,685.84

25 Uniswap XMB84LZBZ 2,135.79

26 SHIBA INU M4HFTFNPC 2,026.01

27 ENA SPRSCSVSW 2,018.62

28 Pepe J41R6PF81 1,665.09

29 Ondo WKH09L3DV 1,526.04

30 Arbitrum 44TP35HF9 864.79

31 Graph Token VMQPVH41W 398.61

32 OFFICIAL TRUMP LJDPGNXXK 334.05

33 Render Token XR0JSKLNZ 322.22

34 FLOKI R1XC4HQT5 303.69

35 Dao Maker / 32.05

Sustainability indicators 

Bitcoin

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Bitcoin /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 197208709015.85880 kWh/a

S.10 Renewable energy consumption 34.4781471084 %
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Field Value Unit

S.11 Energy intensity 6.47909 kWh

S.12 Scope 1 DLT GHG emission - Controlled 0.00000 tCO2e

S.13 Scope 2 DLT GHG emission - Purchased 81249211.37469 tCO2e

S.14 GHG intensity 2.66936 kgCO2e

Qualitative information 

S.4 Consensus Mechanism 

Bitcoin is present on the following networks: Bitcoin, Lightning Network.

The Bitcoin blockchain network uses a consensus mechanism called Proof of Work (PoW) to achieve
distributed consensus among its nodes. Here's a detailed breakdown of how it works: 

Core Concepts:

1. Nodes and Miners: 
- Nodes: Nodes are computers running the Bitcoin software that participate in the network by

validating transactions and blocks. 
-  Miners:  Special  nodes,  called  miners,  perform  the  work  of  creating  new  blocks  by  solving

complex cryptographic puzzles. 
2. Blockchain: The blockchain is a public ledger that records all Bitcoin transactions in a series of

blocks.  Each block contains a  list  of  transactions,  a  reference to the previous block (hash),  a
timestamp, and a nonce (a random number used once). 

3.  Hash Functions:  Bitcoin uses the SHA-256 cryptographic hash function to secure the data in
blocks. A hash function takes input data and produces a fixed-size string of characters, which
appears random. 

Consensus Process:

1. Transaction Validation: Transactions are broadcast to the network and collected by miners into a
block. Each transaction must be validated by nodes to ensure it follows the network's rules, such
as correct signatures and sufficient funds. 

2. Mining and Block Creation: 
- Nonce and Hash Puzzle: Miners compete to find a nonce that, when combined with the block's

data and passed through the SHA-256 hash function, produces a hash that is less than a target
value. This target value is adjusted periodically to ensure that blocks are mined approximately
every 10 minutes. 

-  Proof  of  Work:  The process  of  finding this  nonce is  computationally  intensive  and requires
significant energy and resources. Once a miner finds a valid nonce, they broadcast the newly
mined block to the network. 

3. Block Validation and Addition: Other nodes in the network verify the new block to ensure the
hash is correct and that all transactions within the block are valid. If the block is valid, nodes add it
to their copy of the blockchain and the process starts again with the next block. 

4.  Chain Consensus:  The longest  chain (the chain with the most accumulated proof  of  work)  is
considered the valid chain by the network. Nodes always work to extend the longest valid chain.
In  the  case  of  multiple  valid  chains  (forks),  the  network  will  eventually  resolve  the  fork  by
continuing to mine and extending one chain until it becomes longer.
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For the calculation of  the corresponding indicators,  the additional  energy consumption and the
transactions  of  the  Lightning  Network  have  also  been  taken  into  account,  as  this  reflects  the
categorization  of  the  Digital  Token Identifier  Foundation  for  the  respective  functionally  fungible
group (“FFG”) relevant for this reporting. If  one would exclude these transactions, the respective
estimations regarding the “per transaction” count would be substantially higher.

S.5 Incentive Mechanisms and Applicable Fees 

Bitcoin is present on the following networks: Bitcoin, Lightning Network.

The  Bitcoin  blockchain  relies  on  a  Proof-of-Work  (PoW)  consensus  mechanism  to  ensure  the
security and integrity of transactions. This mechanism involves economic incentives for miners and
a fee structure that supports network sustainability: 

Incentive Mechanisms:

1. Block Rewards: 
- Newly Minted Bitcoins: Miners are incentivized by block rewards, which consist of newly created

bitcoins awarded to the miner who successfully mines a new block. Initially, the block reward
was 50 BTC, but it halves every 210,000 blocks (approx. every four years) in an event known as
the "halving." 

- Halving and Scarcity: The halving mechanism ensures that the total supply of Bitcoin is capped at
21 million, creating scarcity and potentially increasing value over time. 

2. Transaction Fees: 
- User Fees: Each transaction includes a fee paid by the user to incentivize miners to include their

transaction in a block. These fees are crucial, especially as the block reward diminishes over
time due to halving. 

- Fee Market: Transaction fees are determined by the market, where users compete to have their
transactions  processed  quickly.  Higher  fees  typically  result  in  faster  inclusion  in  a  block,
especially during periods of high network congestion. 

For the calculation of  the corresponding indicators,  the additional  energy consumption and the
transactions  of  the  Lightning  Network  have  also  been  taken  into  account,  as  this  reflects  the
categorization  of  the  Digital  Token Identifier  Foundation  for  the  respective  functionally  fungible
group (“FFG”) relevant for this reporting. If  one would exclude these transactions, the respective
estimations regarding the “per transaction” count would be substantially higher

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'top-down' approach is being used, within
which an economic calculation of the miners is assumed. Miners are persons or devices that actively
participate in the proof-of-work consensus mechanism. The miners are considered to be the central
factor  for  the  energy  consumption  of  the  network.  Hardware  is  pre-selected  based  on  the
consensus mechanism's hash algorithm: SHA-256. A current profitability threshold is determined on
the  basis  of  the  revenue  and  cost  structure  for  mining  operations.  Only  Hardware  above  the
profitability threshold is considered for the network. The energy consumption of the network can be
determined  by  taking  into  account  the  distribution  for  the  hardware,  the  efficiency  levels  for
operating the hardware and on-chain information regarding the miners' revenue opportunities. If
significant use of merge mining is known, this is taken into account. When calculating the energy
consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG
DTI)  to  determine  all  implementations  of  the  asset  of  question  in  scope  and  we  update  the
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mappings  regulary,  based  on  data  of  the  Digital  Token  Identifier  Foundation.  The  information
regarding  the  hardware  used  and  the  number  of  participants  in  the  network  is  based  on
assumptions  that  are  verified with  best  effort  using  empirical  data.  In  general,  participants  are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
lightning_network is  calculated first.  For the energy consumption of  the token,  a fraction of  the
energy consumption of the network is attributed to the token, which is determined based on the
activity  of  the  crypto-asset  within  the  network.  When  calculating  the  energy  consumption,  the
Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of  participants  in  the network is  based on assumptions that  are  verified with  best  effort  using
empirical  data.  In  general,  participants  are  assumed  to  be  largely  economically  rational.  As  a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies 

To determine the proportion of  renewable energy usage,  the locations of  the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data.  “Share of  electricity  generated by renewables -  Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies 

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information  sites,  open-source  crawlers  and  crawlers  developed  in-house.  If  no  information  is
available  on  the  geographic  distribution  of  the  nodes,  reference  networks  are  used  which  are
comparable  in  terms  of  their  incentivization  structure  and  consensus  mechanism.  This  geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our  World  in  Data.  “Carbon  intensity  of  electricity  generation  -  Ember  and  Energy  Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Dogecoin
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Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Dogecoin /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 7650331138.02781 kWh/a

S.10 Renewable energy consumption 34.4781471084 %

S.11 Energy intensity 0.47796 kWh

S.12 Scope 1 DLT GHG emission - Controlled 0.00000 tCO2e

S.13 Scope 2 DLT GHG emission - Purchased 3151906.29674 tCO2e

S.14 GHG intensity 0.19692 kgCO2e

Qualitative information 

S.4 Consensus Mechanism 

Dogecoin (DOGE) uses a Proof of Work (PoW) consensus mechanism, similar to Bitcoin, but with
some key differences. 

Core Concepts :

1. Nodes and Miners: 
- Nodes: Nodes in the Dogecoin network are computers running the Dogecoin software. They

validate transactions, maintain the blockchain, and relay information across the network. 
- Miners: Miners are specialized nodes that solve cryptographic puzzles to create new blocks and

validate transactions. This process is known as mining. 
2. Blockchain: The blockchain is a public ledger that records all Dogecoin transactions in a series of

blocks.  Each block contains a  list  of  transactions,  a  reference to the previous block (hash),  a
timestamp, and a nonce (a random number used once). 

3.  Hash  Functions:  Dogecoin  uses  the  Scrypt  hash  function,  which  is  different  from  Bitcoin's
SHA-256.  Scrypt  is  designed to  be  more memory-intensive,  making  it  more resistant  to  ASIC
(Application-Specific Integrated Circuit) mining and encouraging more widespread participation by
regular users with less powerful hardware. 

Consensus Process: 

1. Transaction Validation: Transactions are broadcast to the network and collected by miners into a
block. Each transaction is validated by nodes to ensure it adheres to the network's rules, such as
correct signatures and sufficient funds. 

2. Mining and Block Creation: 
- Nonce and Hash Puzzle: Miners compete to find a nonce that, when combined with the block's

data and passed through the Scrypt hash function, produces a hash below a certain target
value. This target value is adjusted periodically to maintain a consistent block creation time. 
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- Proof of Work: Finding a valid nonce requires significant computational effort. Once a miner
finds a valid nonce, the new block is broadcast to the network. 

3. Block Validation and Addition: Other nodes in the network verify the new block to ensure the
hash is correct and that all transactions within the block are valid. If the block is valid, nodes add it
to their copy of the blockchain, and the process repeats for the next block. 

4.  Chain Consensus:  The longest  chain (the chain with the most accumulated proof  of  work)  is
considered the valid chain by the network. Nodes always work to extend the longest valid chain.
In  the  case  of  multiple  valid  chains  (forks),  the  network  will  eventually  resolve  the  fork  by
continuing to mine and extending one chain until it becomes longer. 

Security and Economic Incentives:

1. Incentives for Miners: 
- Block Rewards: Miners are incentivized to participate in the network by receiving block rewards.

Initially, Dogecoin had a variable block reward, but now it offers a fixed reward of 10,000 DOGE
per block. 

-  Transaction Fees:  Miners also collect  transaction fees from the transactions included in the
block. These fees provide an additional incentive for miners. 

2. Security: 
- Hash Rate and Difficulty: The security of the Dogecoin network is directly proportional to its hash

rate, the total computational power of all miners. A higher hash rate means more difficult and
costly attacks. 

- 51% Attack: An attacker would need to control more than 50% of the network's hash rate to
double-spend or rewrite parts of the blockchain. The cost and resource requirement for such
an attack make it impractical for a sufficiently large and decentralized network like Dogecoin. 

3. Merged Mining: Dogecoin supports merged mining with Litecoin (LTC). This means miners can
mine both Dogecoin and Litecoin simultaneously without additional  computational  effort.  This
enhances the security of both networks by pooling their hash rates.

S.5 Incentive Mechanisms and Applicable Fees 

Dogecoin  uses  a  Proof  of  Work  (PoW)  consensus  mechanism  to  ensure  network  security  and
integrity, relying on economic incentives for miners and transaction fees from users.

Incentive Mechanisms 

1. Miners: 
-  Block  Rewards:  Miners  receive  block  rewards  for  successfully  mining  new  blocks.  Initially,

Dogecoin had a variable block reward, but it now offers a fixed reward of 10,000 DOGE per
block. These rewards are a primary incentive for miners to invest in the computational power
necessary to secure the network. 

-  Transaction Fees:  In  addition to  block  rewards,  miners  also  earn transaction fees  from the
transactions they include in the blocks they mine. Although Dogecoin’s transaction fees are
typically low, they still provide an important supplementary income for miners. 

-  Merged  Mining:  Dogecoin  supports  merged  mining  with  Litecoin,  allowing  miners  to
simultaneously  mine  both  cryptocurrencies  without  additional  computational  effort.  This
process increases the hash rate and security of both networks by pooling their resources. 

2. Security: 
- Hash Rate and Difficulty: The security of Dogecoin’s network is directly related to its hash rate,

the total computational power used by all miners. A higher hash rate makes the network more
resistant to attacks. The mining difficulty adjusts periodically to ensure that blocks are mined
approximately every minute, maintaining network stability. 51% Attack Deterrence: Controlling
more than 50% of the network's hash rate to perform a 51% attack is costly and difficult. The
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significant computational power and energy required make such attacks impractical for a large
and decentralized network like Dogecoin. 

Fees Applicable on the Dogecoin Blockchain:

1. Transaction Fees: 
- Flat Fee Structure: Dogecoin uses a relatively simple fee structure. The typical transaction fee is 1

DOGE per kilobyte of transaction data. This low fee is one of Dogecoin’s appeals,  making it
suitable for small and micro-transactions. 

- Incentives for Faster Processing: Although transaction fees are generally low, users can choose
to pay higher fees to incentivize miners to include their transactions in the next block, ensuring
faster processing times. 

2. Mining Rewards: 
- Block Subsidy: The fixed block reward of 10,000 DOGE incentivizes miners to continue securing

the  network.  This  reward  will  persist  as  Dogecoin  does  not  have  a  maximum  supply  cap,
ensuring continuous incentives for miners. 

- Fee Inclusion: Besides the block subsidy, the inclusion of transaction fees provides an additional,
albeit smaller, incentive for miners to process transactions efficiently.

S.9 Energy consumption sources and methodologies 

For the calculation of energy consumptions, the so called 'top-down' approach is being used, within
which an economic calculation of the miners is assumed. Miners are persons or devices that actively
participate in the proof-of-work consensus mechanism. The miners are considered to be the central
factor  for  the  energy  consumption  of  the  network.  Hardware  is  pre-selected  based  on  the
consensus mechanism's hash algorithm: Scrypt. A current profitability threshold is determined on
the  basis  of  the  revenue  and  cost  structure  for  mining  operations.  Only  Hardware  above  the
profitability threshold is considered for the network. The energy consumption of the network can be
determined  by  taking  into  account  the  distribution  for  the  hardware,  the  efficiency  levels  for
operating the hardware and on-chain information regarding the miners' revenue opportunities. If
significant use of merge mining is known, this is taken into account. When calculating the energy
consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG
DTI)  to  determine  all  implementations  of  the  asset  of  question  in  scope  and  we  update  the
mappings  regulary,  based  on  data  of  the  Digital  Token  Identifier  Foundation.  The  information
regarding  the  hardware  used  and  the  number  of  participants  in  the  network  is  based  on
assumptions  that  are  verified with  best  effort  using  empirical  data.  In  general,  participants  are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies 

To determine the proportion of  renewable energy usage,  the locations of  the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data.  “Share of  electricity  generated by renewables -  Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
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“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies 

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information  sites,  open-source  crawlers  and  crawlers  developed  in-house.  If  no  information  is
available  on  the  geographic  distribution  of  the  nodes,  reference  networks  are  used  which  are
comparable  in  terms  of  their  incentivization  structure  and  consensus  mechanism.  This  geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our  World  in  Data.  “Carbon  intensity  of  electricity  generation  -  Ember  and  Energy  Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Litecoin

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Litecoin /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 1168181999.71893 kWh/a

S.10 Renewable energy consumption 34.4781471084 %

S.11 Energy intensity 0.03916 kWh

S.12 Scope 1 DLT GHG emission - Controlled 0.00000 tCO2e

S.13 Scope 2 DLT GHG emission - Purchased 481286.38280 tCO2e

S.14 GHG intensity 0.01613 kgCO2e

Qualitative information 

S.4 Consensus Mechanism 

Litecoin, like Bitcoin, uses Proof of Work (PoW) as its consensus mechanism, but with a few key
differences: 

1. Scrypt Hashing Algorithm: Unlike Bitcoin’s SHA-256 algorithm, Litecoin uses the Scrypt hashing
algorithm,  which  is  more  memory-intensive.  This  makes  mining  Litecoin  more  accessible  to
regular users and limits the advantages of specialized hardware (like ASICs) in the early years. 
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2. Mining and Block Creation: Miners compete to solve cryptographic puzzles and, upon success,
add  new blocks  to  the  blockchain.  This  process  involves  solving  the  Scrypt  algorithm,  which
requires computational work. The first miner to solve the problem earns the block reward and
transaction fees associated with the transactions in the block. 

3. Block Time: Litecoin has a block time of 2.5 minutes, much faster than Bitcoin’s 10 minutes. This
means transactions confirm more quickly, increasing the overall network speed. 

4. Block Reward Halving: Similar to Bitcoin, Litecoin has a block reward halving event approximately
every four years. Initially, miners earned 50 LTC per block, but this reward decreases by half after
each halving event. This process continues until the maximum supply of 84 million LTC is reached.

5.  Difficulty  Adjustment:  Litecoin  adjusts  the  mining  difficulty  approximately  every  2,016  blocks
(about every 3.5 days) to ensure that blocks continue to be mined at a consistent rate of 2.5
minutes per block, regardless of fluctuations in the total network hash rate.

S.5 Incentive Mechanisms and Applicable Fees 

Litecoin, like Bitcoin, uses the Proof of Work (PoW) consensus mechanism to secure transactions
and incentivize miners. 

Incentive Mechanisms:

1. Mining Rewards: 
Block  Rewards:  Miners  are  rewarded  with  Litecoin  (LTC)  for  successfully  mining  new  blocks.

Initially,  miners received 50 LTC per block,  but this  reward halves approximately every four
years. Transaction Fees: Miners also earn transaction fees from the transactions included in the
blocks they mine. Users pay fees to have their transactions processed by miners, especially
when they need faster confirmation times. 

2. Halving: 
The halving mechanism ensures that over time, fewer Litecoins are introduced into circulation,

creating  a  deflationary  model.  This  makes  mining  more  valuable  as  the  circulating  supply
becomes scarcer, incentivizing miners to continue participating in the network even as block
rewards decrease. 

3. Economic Security: 
The cost of mining (e.g., hardware and electricity) provides a strong economic incentive for miners

to  act  honestly.  If  miners  attempt  to  cheat  or  attack  the  network,  they  risk  losing  the
computational work they invested, as invalid blocks will be rejected by the network. 

Fees on the Litecoin Blockchain: 

- Transaction Fees: Litecoin users pay a transaction fee for each transaction, typically calculated in
LTC per byte of transaction data. The fees are dynamic and vary based on network congestion. 

- Low Fees: Litecoin is known for its relatively low transaction fees compared to other blockchains
like Bitcoin, which makes it ideal for smaller transactions and micro-payments. 

- Fee Redistribution: Collected transaction fees are distributed to miners as part of their rewards for
validating transactions and securing the network.

S.9 Energy consumption sources and methodologies 

For the calculation of energy consumptions, the so called 'top-down' approach is being used, within
which an economic calculation of the miners is assumed. Miners are persons or devices that actively
participate in the proof-of-work consensus mechanism. The miners are considered to be the central
factor  for  the  energy  consumption  of  the  network.  Hardware  is  pre-selected  based  on  the
consensus mechanism's hash algorithm: Scrypt. A current profitability threshold is determined on
the  basis  of  the  revenue  and  cost  structure  for  mining  operations.  Only  Hardware  above  the
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profitability threshold is considered for the network. The energy consumption of the network can be
determined  by  taking  into  account  the  distribution  for  the  hardware,  the  efficiency  levels  for
operating the hardware and on-chain information regarding the miners' revenue opportunities. If
significant use of merge mining is known, this is taken into account. When calculating the energy
consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG
DTI)  to  determine  all  implementations  of  the  asset  of  question  in  scope  and  we  update  the
mappings  regulary,  based  on  data  of  the  Digital  Token  Identifier  Foundation.  The  information
regarding  the  hardware  used  and  the  number  of  participants  in  the  network  is  based  on
assumptions  that  are  verified with  best  effort  using  empirical  data.  In  general,  participants  are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies 

To determine the proportion of  renewable energy usage,  the locations of  the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data.  “Share of  electricity  generated by renewables -  Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies 

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information  sites,  open-source  crawlers  and  crawlers  developed  in-house.  If  no  information  is
available  on  the  geographic  distribution  of  the  nodes,  reference  networks  are  used  which  are
comparable  in  terms  of  their  incentivization  structure  and  consensus  mechanism.  This  geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our  World  in  Data.  “Carbon  intensity  of  electricity  generation  -  Ember  and  Energy  Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Bitcoin Cash

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /
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Field Value Unit

S.3 Name of the crypto-asset Bitcoin Cash /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 1157903253.92621 kWh/a

S.10 Renewable energy consumption 34.4781471084 %

S.11 Energy intensity 0.15743 kWh

S.12 Scope 1 DLT GHG emission - Controlled 0.00000 tCO2e

S.13 Scope 2 DLT GHG emission - Purchased 477051.58002 tCO2e

S.14 GHG intensity 0.06486 kgCO2e

Qualitative information 

S.4 Consensus Mechanism 

Bitcoin Cash is present on the following networks: Bitcoin Cash, Smart Bitcoin Cash.

The Bitcoin Cash blockchain network uses a consensus mechanism called Proof of Work (PoW) to
achieve distributed consensus among its nodes. It originated from the Bitcoin blockchain, hence has
the same consensus mechanisms but with a larger block size, which makes it more centralized. 

Core Concepts:

1. Nodes and Miners: 
- Nodes: Nodes are computers running the Bitcoin Cash software that participate in the network

by validating transactions and blocks. 
-  Miners:  Special  nodes,  called  miners,  perform  the  work  of  creating  new  blocks  by  solving

complex cryptographic puzzles. 
2. Blockchain: The blockchain is a public ledger that records all Bitcoin Cash transactions in a series

of blocks. Each block contains a list of transactions, a reference to the previous block (hash), a
timestamp, and a nonce (a random number used once). 

3. Hash Functions: Bitcoin Cash uses the SHA-256 cryptographic hash function to secure the data in
blocks. A hash function takes input data and produces a fixed-size string of characters, which
appears random. 

Consensus Process: 

1. Transaction Validation: Transactions are broadcast to the network and collected by miners into a
block. Each transaction must be validated by nodes to ensure it follows the network's rules, such
as correct signatures and sufficient funds. 

2. Mining and Block Creation: 
- Nonce and Hash Puzzle: Miners compete to find a nonce that, when combined with the block's

data and passed through the SHA-256 hash function, produces a hash that is less than a target
value. This target value is adjusted periodically to ensure that blocks are mined approximately
every 10 minutes. 

-  Proof  of  Work:  The process  of  finding this  nonce is  computationally  intensive  and requires
significant energy and resources. Once a miner finds a valid nonce, they broadcast the newly
mined block to the network. 
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3. Block Validation and Addition: 
-  Other nodes in the network verify the new block to ensure the hash is correct and that all

transactions within the block are valid. 
- If the block is valid, nodes add it to their copy of the blockchain and the process starts again with

the next block. 
4. Chain Consensus: 

- The longest chain (the chain with the most accumulated proof of work) is considered the valid
chain by the network. Nodes always work to extend the longest valid chain. 

-  In  the  case  of  multiple  valid  chains  (forks),  the  network  will  eventually  resolve  the  fork  by
continuing to mine and extending one chain until it becomes longer.

Smart Bitcoin Cash (SmartBCH) operates as a sidechain to Bitcoin Cash (BCH), leveraging a hybrid
consensus mechanism combining Proof of Work (PoW) compatibility and validator-based validation. 

Core Components: 
- Proof of Work Compatibility: SmartBCH relies on Bitcoin Cash's PoW for settlement and security,

ensuring robust integration with BCH’s main chain. SHA-256 Algorithm: Uses the same SHA-256
hashing algorithm as Bitcoin Cash, allowing compatibility with existing mining hardware and
infrastructure. 

-  Consensus via Validators:  Transactions within SmartBCH are validated by a set  of  validators
chosen based on staking and operational efficiency. This hybrid approach combines the hash
power of PoW with a validator-based model to enhance scalability and flexibility.

S.5 Incentive Mechanisms and Applicable Fees 

Bitcoin Cash is present on the following networks: Bitcoin Cash, Smart Bitcoin Cash.

The  Bitcoin  Cash  blockchain  operates  on  a  Proof-of-Work  (PoW)  consensus  mechanism,  with
incentives and fee structures designed to support miners and the overall network's sustainability: 

Incentive Mechanism: 

1. Block Rewards: 
- Newly Minted Bitcoins: Miners receive a block reward, which consists of newly created bitcoins

for successfully mining a new block. Initially, the reward was 50 BCH, but it halves approximately
every four years in an event known as the "halving." 

- Halving and Scarcity: The halving ensures that the total supply of Bitcoin Cash is capped at 21
million BCH, creating scarcity that could drive up value over time. 

2. Transaction Fees: 
- User Fees: Each transaction includes a fee, paid by users, that incentivizes miners to include the

transaction in a new block. This fee market becomes increasingly important as block rewards
decrease over time due to the halving events. 

- Fee Market: Transaction fees are market-driven, with users competing to get their transactions
included quickly. Higher fees lead to faster transaction processing, especially during periods of
high network congestion. 

Applicable Fees: 

1. Transaction Fees: 
Bitcoin  Cash  transactions  require  a  small  fee,  paid  in  BCH,  which  is  determined  by  the

transaction's size and the network demand at the time. These fees are crucial for the continued
operation of the network, particularly as block rewards decrease over time due to halvings. 
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2. Fee Structure During High Demand: 
In times of high congestion, users may choose to increase their transaction fees to prioritize their

transactions for faster processing. The fee structure ensures that miners are incentivized to
prioritize higher-fee transactions.

SmartBCH’s  incentive  model  encourages  validators  and  network  participants  to  secure  the
sidechain and process transactions efficiently. 

Incentive Mechanisms: 

-  Validator  Rewards:  Validators  are  rewarded with  a  share  of  transaction  fees  for  their  role  in
validating transactions and maintaining the network. 

-  Economic  Alignment:  The  system incentivizes  validators  to  act  in  the  network’s  best  interest,
ensuring stability and fostering adoption through economic alignment. 

Applicable Fees: 

Transaction  Fees:  Fees  for  transactions  on  SmartBCH  are  paid  in  BCH,  ensuring  seamless
integration with the Bitcoin Cash ecosystem.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'top-down' approach is being used, within
which an economic calculation of the miners is assumed. Miners are persons or devices that actively
participate in the proof-of-work consensus mechanism. The miners are considered to be the central
factor  for  the  energy  consumption  of  the  network.  Hardware  is  pre-selected  based  on  the
consensus mechanism's hash algorithm: SHA-256. A current profitability threshold is determined on
the  basis  of  the  revenue  and  cost  structure  for  mining  operations.  Only  Hardware  above  the
profitability threshold is considered for the network. The energy consumption of the network can be
determined  by  taking  into  account  the  distribution  for  the  hardware,  the  efficiency  levels  for
operating the hardware and on-chain information regarding the miners' revenue opportunities. If
significant use of merge mining is known, this is taken into account. When calculating the energy
consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG
DTI)  to  determine  all  implementations  of  the  asset  of  question  in  scope  and  we  update  the
mappings  regulary,  based  on  data  of  the  Digital  Token  Identifier  Foundation.  The  information
regarding  the  hardware  used  and  the  number  of  participants  in  the  network  is  based  on
assumptions  that  are  verified with  best  effort  using  empirical  data.  In  general,  participants  are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical  findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update  the  mappings  regulary,  based  on  data  of  the  Digital  Token  Identifier  Foundation.  The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
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assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies 

To determine the proportion of  renewable energy usage,  the locations of  the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data.  “Share of  electricity  generated by renewables -  Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies 

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information  sites,  open-source  crawlers  and  crawlers  developed  in-house.  If  no  information  is
available  on  the  geographic  distribution  of  the  nodes,  reference  networks  are  used  which  are
comparable  in  terms  of  their  incentivization  structure  and  consensus  mechanism.  This  geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our  World  in  Data.  “Carbon  intensity  of  electricity  generation  -  Ember  and  Energy  Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Ethereum Classic Ether

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Ethereum Classic Ether /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 538126480.41473 kWh/a

S.10 Renewable energy consumption 34.4781471084 %

S.11 Energy intensity 0.04774 kWh
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Field Value Unit

S.12 Scope 1 DLT GHG emission - Controlled 0.00000 tCO2e

S.13 Scope 2 DLT GHG emission - Purchased 221705.99043 tCO2e

S.14 GHG intensity 0.01967 kgCO2e

Qualitative information 

S.4 Consensus Mechanism 

Ethereum Classic  operates  on  a  Proof  of  Work  (PoW)  consensus  mechanism with  the  Etchash
algorithm, which is a modified version of Ethash. This PoW model requires computational work from
miners to validate transactions and secure the network. 

Core Components: 

- Proof of Work with Etchash Mining and Security: Miners use computational resources to perform
the work necessary to add blocks to the blockchain, ensuring network security and resistance to
tampering. 

- Code is Law Philosophy Immutable Ledger: Following the 2016 DAO hack, Ethereum Classic upheld
the  “Code  is  Law”  principle  by  retaining  the  unaltered  blockchain.  This  commitment  to
immutability  sets  Ethereum  Classic  apart,  preserving  its  original  ledger  without  reverting
transactions.

S.5 Incentive Mechanisms and Applicable Fees 

Ethereum  Classic’s  incentive  model  combines  block  rewards  and  transaction  fees,  encouraging
miner participation and network security. 

Incentive Mechanisms: 

1. Block Rewards: 
Deflationary Supply Model: Miners receive ETC through block rewards, which decrease over time,

similar  to  Bitcoin’s  model.  This  deflationary  design  supports  ETC’s  value  retention  and
incentivizes continued mining efforts. 

2. Transaction Fees: 
User-Paid Fees: Users pay fees in ETC for sending transactions, interacting with smart contracts,

and  utilizing  dApps.  These  fees  provide  miners  with  additional  income  and  help  maintain
network security. 

Applicable Fees:  Ethereum Classic’s  fee structure involves user-paid transaction fees to support
network operations and discourage spam transactions. 

1. Transaction Fees: 
-  User-Paid  Fees:  Every  transaction  on  Ethereum  Classic  incurs  a  fee  in  ETC,  based  on  the

computational  effort  required.  These  fees  ensure  that  resources  are  efficiently  used  and
contribute to miner revenue. 

-  Dynamic  Demand-Based  Fees:  Fees  vary  according  to  transaction  complexity  and  network
demand, helping maintain transaction efficiency and preventing congestion. 
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2. Mining Rewards: 
Block Rewards Reduction: Block rewards, which are scheduled to reduce over time, provide a

primary  income  source  for  miners.  This  model  aims  to  balance  network  security  while
managing ETC’s supply.

S.9 Energy consumption sources and methodologies 

For the calculation of energy consumptions, the so called 'top-down' approach is being used, within
which an economic calculation of the miners is assumed. Miners are persons or devices that actively
participate in the proof-of-work consensus mechanism. The miners are considered to be the central
factor  for  the  energy  consumption  of  the  network.  Hardware  is  pre-selected  based  on  the
consensus mechanism's hash algorithm: Etchash. A current profitability threshold is determined on
the  basis  of  the  revenue  and  cost  structure  for  mining  operations.  Only  Hardware  above  the
profitability threshold is considered for the network. The energy consumption of the network can be
determined  by  taking  into  account  the  distribution  for  the  hardware,  the  efficiency  levels  for
operating the hardware and on-chain information regarding the miners' revenue opportunities. If
significant use of merge mining is known, this is taken into account. When calculating the energy
consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG
DTI)  to  determine  all  implementations  of  the  asset  of  question  in  scope  and  we  update  the
mappings  regulary,  based  on  data  of  the  Digital  Token  Identifier  Foundation.  The  information
regarding  the  hardware  used  and  the  number  of  participants  in  the  network  is  based  on
assumptions  that  are  verified with  best  effort  using  empirical  data.  In  general,  participants  are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies 

To determine the proportion of  renewable energy usage,  the locations of  the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data.  “Share of  electricity  generated by renewables -  Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies 

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information  sites,  open-source  crawlers  and  crawlers  developed  in-house.  If  no  information  is
available  on  the  geographic  distribution  of  the  nodes,  reference  networks  are  used  which  are
comparable  in  terms  of  their  incentivization  structure  and  consensus  mechanism.  This  geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our  World  in  Data.  “Carbon  intensity  of  electricity  generation  -  Ember  and  Energy  Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
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“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Zcash

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Zcash /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 322297411.64817 kWh/a

S.10 Renewable energy consumption 34.4781475973 %

S.11 Energy intensity 2.38483 kWh

S.12 Scope 1 DLT GHG emission - Controlled 0.00000 tCO2e

S.13 Scope 2 DLT GHG emission - Purchased 132785.26333 tCO2e

S.14 GHG intensity 0.98254 kgCO2e

Qualitative information 

S.4 Consensus Mechanism 

Zcash is present on the following networks: Binance Smart Chain, Zcash.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security. 

Core Components:

1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network’s security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin).  Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security. 

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security. 

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
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role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process 

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators.  The  more  BNB staked  and  votes  received,  the  higher  the  chance  of  being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes. 

5.  Block  Production:  The selected validators  take  turns  producing  blocks  in  a  PoA-like  manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network. 

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives 

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if  validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB. 

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and  delegators  share  transaction  fees  as  rewards,  which  provides  continuous  economic
incentives to maintain network security and performance. 

9.  Transaction Fees:  BSC employs low transaction fees,  paid in BNB, making it  cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

Zcash operates on a Proof of Work (PoW) consensus mechanism, using the Equihash algorithm,
which requires miners to dedicate computational power to validate transactions and produce new
blocks. 

Core Components: 

1. Equihash PoW: Mining Process: 
Miners compete to add new blocks by investing computational resources. This work serves as

proof that miners are actively contributing to network security. 
2. zk-SNARKs Integration:

Zcash utilizes zk-SNARKs (Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge) to
enable privacy-focused transactions. This cryptographic proof mechanism allows transactions
to be verified without revealing sensitive information, such as the sender, recipient, or amount.

S.5 Incentive Mechanisms and Applicable Fees 

Zcash is present on the following networks: Binance Smart Chain, Zcash.

Binance Smart Chain (BSC) uses the Proof of  Staked Authority (PoSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators. 

Incentive Mechanisms 

1. Validators: 
-  Staking  Rewards:  Validators  must  stake  a  significant  amount  of  BNB  to  participate  in  the

consensus process. They earn rewards in the form of transaction fees and block rewards. 
- Selection Process: Validators are selected based on the amount of BNB staked and the votes

received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks. 
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2. Delegators: 
- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases

the validator's total stake and improves their chances of being selected to produce blocks. 
-  Shared  Rewards:  Delegators  earn  a  portion  of  the  rewards  that  validators  receive.  This

incentivizes  token  holders  to  participate  in  the  network’s  security  and  decentralization  by
choosing reliable validators. 

3. Candidates: 
Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB

and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience. 

4. Economic Security: 
- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.

Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network. 

-  Opportunity  Cost:  Staking  requires  validators  and  delegators  to  lock  up  their  BNB  tokens,
providing an economic incentive to act honestly to avoid losing their staked assets. 

Fees on the Binance Smart Chain 

1. Transaction Fees: 
- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.

These  fees  are  paid  in  BNB  and  are  essential  for  maintaining  network  operations  and
compensating validators. 

-  Dynamic  Fee  Structure:  Transaction  fees  can  vary  based  on  network  congestion  and  the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet. 

2. Block Rewards: 
Incentivizing  Validators:  Validators  earn  block  rewards  in  addition  to  transaction  fees.  These

rewards are distributed to validators for their role in maintaining the network and processing
transactions. 

3. Cross-Chain Fees: 
Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred

between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience. 

4. Smart Contract Fees: 
Deploying  and  interacting  with  smart  contracts  on  BSC  involves  paying  fees  based  on  the

computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

Zcash incentivizes miners through block rewards and transaction fees,  supporting both network
security and operational efficiency. 

Incentive Mechanisms: 

1. Block Rewards: Miners receive ZEC as a reward for creating blocks, encouraging ongoing network
support and computational investment. 

2. Transaction Fees: Users pay transaction fees in ZEC for processing transactions, which miners
receive in addition to block rewards. 
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Applicable Fees: 

Enhanced Privacy and Shielded Transactions: 
zk-SNARKs Efficiency: While shielded transactions offer privacy, they require more computational

resources, which may slightly increase fees. Upgrades like Halo aim to enhance the efficiency of
zk-SNARKs, keeping shielded transaction costs manageable.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'top-down' approach is being used, within
which an economic calculation of the miners is assumed. Miners are persons or devices that actively
participate in the proof-of-work consensus mechanism. The miners are considered to be the central
factor  for  the  energy  consumption  of  the  network.  Hardware  is  pre-selected  based  on  the
consensus mechanism's hash algorithm: Equihash. A current profitability threshold is determined
on the basis of the revenue and cost structure for mining operations. Only Hardware above the
profitability threshold is considered for the network. The energy consumption of the network can be
determined  by  taking  into  account  the  distribution  for  the  hardware,  the  efficiency  levels  for
operating the hardware and on-chain information regarding the miners' revenue opportunities. If
significant use of merge mining is known, this is taken into account. When calculating the energy
consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG
DTI)  to  determine  all  implementations  of  the  asset  of  question  in  scope  and  we  update  the
mappings  regulary,  based  on  data  of  the  Digital  Token  Identifier  Foundation.  The  information
regarding  the  hardware  used  and  the  number  of  participants  in  the  network  is  based  on
assumptions  that  are  verified with  best  effort  using  empirical  data.  In  general,  participants  are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
binance_smart_chain is calculated first. For the energy consumption of the token, a fraction of the
energy consumption of the network is attributed to the token, which is determined based on the
activity  of  the  crypto-asset  within  the  network.  When  calculating  the  energy  consumption,  the
Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of  participants  in  the network is  based on assumptions that  are  verified with  best  effort  using
empirical  data.  In  general,  participants  are  assumed  to  be  largely  economically  rational.  As  a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies 

To determine the proportion of  renewable energy usage,  the locations of  the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data.  “Share of  electricity  generated by renewables -  Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
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“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies 

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information  sites,  open-source  crawlers  and  crawlers  developed  in-house.  If  no  information  is
available  on  the  geographic  distribution  of  the  nodes,  reference  networks  are  used  which  are
comparable  in  terms  of  their  incentivization  structure  and  consensus  mechanism.  This  geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our  World  in  Data.  “Carbon  intensity  of  electricity  generation  -  Ember  and  Energy  Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Solana SOL

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Solana SOL /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 6843750.00000 kWh/a

S.10 Renewable energy consumption 38.5831139958 %

S.11 Energy intensity 0.00000 kWh

S.12 Scope 1 DLT GHG emission - Controlled 0.00000 tCO2e

S.13 Scope 2 DLT GHG emission - Purchased 2319.13534 tCO2e

S.14 GHG intensity 0.00000 kgCO2e

Qualitative information 

S.4 Consensus Mechanism 

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.
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Core Concepts:

1. Proof of History (PoH): 
-  Time-Stamped Transactions:  PoH is a cryptographic technique that timestamps transactions,

creating a historical record that proves that an event has occurred at a specific moment in time.
- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash

that includes the transaction and the time it was processed. This sequence of hashes provides
a  verifiable  order  of  events,  enabling  the  network  to  efficiently  agree  on  the  sequence  of
transactions. 

2. Proof of Stake (PoS): 
- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL

tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks. 

-  Delegation:  Token  holders  can  delegate  their  SOL  tokens  to  validators,  earning  rewards
proportional to their stake while enhancing the network's security. 

Consensus Process: 

1. Transaction Validation: 
Transactions  are  broadcast  to  the  network  and  collected  by  validators.  Each  transaction  is

validated  to  ensure  it  meets  the  network’s  criteria,  such  as  having  correct  signatures  and
sufficient funds. 

2. PoH Sequence Generation: 
A validator generates a sequence of hashes using PoH, each containing a timestamp and the

previous  hash.  This  process  creates  a  historical  record  of  transactions,  establishing  a
cryptographic clock for the network. 

3. Block Production: 
The network uses PoS to select a leader validator based on their stake. The leader is responsible

for  bundling  the  validated  transactions  into  a  block.  The  leader  validator  uses  the  PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order. 

4. Consensus and Finalization: 
Other validators verify the block produced by the leader validator. They check the correctness of

the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized. 

Security and Economic Incentives: 

1. Incentives for Validators: 
- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are

distributed in SOL tokens and are proportional to the validator’s stake and performance. 
- Transaction Fees: Validators also earn transaction fees from the transactions included in the

blocks  they  produce.  These  fees  provide  an  additional  incentive  for  validators  to  process
transactions efficiently. 

2. Security: 
- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking

acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens. 

-  Delegated  Staking:  Token  holders  can  delegate  their  SOL  tokens  to  validators,  enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators. 
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3. Economic Penalties: 
Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing

invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees 

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.

Incentive Mechanisms:

1. Validators: 
- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.

They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks. 

-  Transaction  Fees:  Validators  earn  a  portion  of  the  transaction  fees  paid  by  users  for  the
transactions  they  include  in  the  blocks.  This  provides  an  additional  financial  incentive  for
validators to process transactions efficiently and maintain the network's integrity. 

2. Delegators: 
- Delegated Staking: Token holders who do not wish to run a validator node can delegate their

SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This  encourages  widespread  participation  in  securing  the  network  and  ensures
decentralization. 

3. Economic Security: 
- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or

being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network. 

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain 

Transaction Fees: 

1. Low and Predictable Fees: 
Solana is designed to handle a high throughput of transactions, which helps keep fees low and

predictable.  The average transaction fee on Solana is  significantly lower compared to other
blockchains like Ethereum. 

2. Fee Structure: 
Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth. 
3. Rent Fees: 

State  Storage:  Solana  charges  rent  fees  for  storing  data  on  the  blockchain.  These  fees  are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network. 

4. Smart Contract Fees: 
Execution  Costs:  Similar  to  transaction  fees,  fees  for  deploying  and  interacting  with  smart

contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.
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S.9 Energy consumption sources and methodologies 

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical  findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update  the  mappings  regulary,  based  on  data  of  the  Digital  Token  Identifier  Foundation.  The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies 

To determine the proportion of  renewable energy usage,  the locations of  the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data.  “Share of  electricity  generated by renewables -  Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies 

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information  sites,  open-source  crawlers  and  crawlers  developed  in-house.  If  no  information  is
available  on  the  geographic  distribution  of  the  nodes,  reference  networks  are  used  which  are
comparable  in  terms  of  their  incentivization  structure  and  consensus  mechanism.  This  geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our  World  in  Data.  “Carbon  intensity  of  electricity  generation  -  Ember  and  Energy  Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Internet Computer Token
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Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Internet Computer Token /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 5834160.00000 kWh/a

S.10 Renewable energy consumption 35.9000000000 %

S.11 Energy intensity 0.00720 kWh

S.12 Scope 1 DLT GHG emission - Controlled 0.00000 tCO2e

S.13 Scope 2 DLT GHG emission - Purchased 2047.79016 tCO2e

S.14 GHG intensity 0.00253 kgCO2e

Qualitative information 

S.4 Consensus Mechanism 

The Internet Computer Protocol (ICP) uses a unique consensus mechanism called Threshold Relay
combined with Chain Key Technology to ensure decentralized, scalable, and secure operations for
its network. 

Core Components of ICP’s Consensus Mechanism: 

1. Threshold Relay: 
Threshold Relay is a consensus protocol that enables the network to achieve finality without a

traditional Proof-of-Work or Proof-of-Stake mechanism. It  leverages a group of nodes called
"the committee" to generate a random beacon that is used for the selection of the next block
producer.  The  protocol  is  designed  to  provide  scalability  and  speed  while  maintaining
decentralization  by  allowing  any  node  to  join  the  consensus  process.  The  key  feature  of
Threshold Relay is that it utilizes a threshold signature scheme, where a group of nodes must
collaborate  to  create  a  valid  signature,  ensuring  that  consensus  is  achieved  even  in  the
presence of faulty or malicious nodes. 

2. Chain Key Technology: 
Chain Key Technology is used to manage the state of the Internet Computer, allowing it to scale

effectively  across  a  vast  number  of  nodes  while  still  providing  fast  and  secure  transaction
finality.  This  technology  enables  the  creation  and  management  of  many  independent
blockchains (also known as subnet blockchains), each with its own set of validators. Chain Key
Technology  allows  the  Internet  Computer  to  support  billions  of  smart  contracts  without
compromising speed, as it facilitates quick communication between the subnets and enables
cross-chain interoperability. 

3. Canister Smart Contracts: 
- The Internet Computer utilizes a decentralized model where the computation of canister smart

contracts (which hold the application logic) occurs across different nodes in the network. These
canisters can run autonomously and scale with the network’s growth. 
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- Finality and Security: The consensus mechanism ensures finality once a transaction is validated,
meaning that once a block is added, it cannot be reverted, providing the security required for
high-stakes applications. The use of Threshold Relay provides robust Byzantine Fault Tolerance
(BFT),  enabling  the  network  to  tolerate  faulty  or  malicious  behavior  without  compromising
network integrity.

S.5 Incentive Mechanisms and Applicable Fees 

The Internet Computer Protocol (ICP) incentivizes network participants (validators, node operators,
and  canister  developers)  through  various  reward  mechanisms  and  transaction  fees.  Here's  a
breakdown of the incentive mechanisms and applicable fees related to ICP: 

Incentive Mechanism: 

1. Network Participation and Rewards: 
- Validators: Validators are crucial for maintaining the integrity and security of the network. They

stake ICP tokens to participate in consensus and are rewarded for validating blocks, maintaining
the integrity of the decentralized network, and ensuring its performance. Rewards for validators
are based on their participation in the consensus mechanism and their stake in the network. 

- Node Operators: Node operators who maintain the physical infrastructure of the network (such
as hardware and server resources) are also rewarded. These operators run the nodes that
participate in the Threshold Relay and provide computational power to the network. 

2. Canister Developers and Network Participants: 
- Canister Smart Contracts: Developers of canisters (smart contracts) on the Internet Computer

are incentivized through the creation of decentralized applications (dApps).  Developers may
also benefit from transaction fees generated by the usage of their dApps and the deployment
of smart contracts on the network. 

- Usage Fees: Users of decentralized applications (dApps) or canisters are incentivized to pay for
their usage through fees. These fees are often paid in ICP tokens, and developers can receive a
share of these fees based on the usage of their deployed applications. 

3. Governance: 
The ICP Token is used for governance via the Network Nervous System (NNS), where holders of

ICP tokens participate in decisions regarding the protocol, such as network upgrades, incentive
adjustments,  and  the  allocation  of  funds.  Token  holders  are  rewarded  with  the  ability  to
influence the future of the network. 

4. Staking Rewards: 
Staking: ICP token holders can participate in staking their tokens in the NNS, which influences

network consensus and governance. By participating in staking, they help secure the network
and are rewarded with staking rewards (a form of passive income). The staking rewards are
given to token holders who participate in securing the network via the NNS. 

Applicable Fees: 

1. Transaction Fees: 
- Canister Calls: Every interaction with a canister (smart contract) on the Internet Computer incurs

a  transaction  fee.  These  fees  are  typically  paid  in  ICP  tokens  and  are  used  to  cover  the
computational resources required to process requests, store data, and manage execution. 

-  Fee Structure:  Transaction fees depend on the complexity  and resources consumed by the
canister call or network operation. For example, operations that require more computational
power or data storage may incur higher fees. 

2. Storage Fees: 
Canister Data Storage: Developers and users who deploy applications on the Internet Computer

are required to pay fees for storing data. These fees ensure that network resources are used
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efficiently and that canisters do not waste storage space. The cost of storage is typically paid in
ICP tokens. 

3. Governance Participation Fees: 
Voting and Proposal Fees: Participation in the governance process via the NNS (Network Nervous

System)  may  require  a  small  fee,  depending  on  the  type  of  governance  action  (such  as
submitting a proposal or voting). These fees ensure that governance is distributed and prevent
spam attacks on the governance system. 

4. Node and Validator Fees: 
Fees for Node Operations: Node operators who provide computational power to the network

may incur costs related to maintaining hardware and operating nodes. These fees are partially
offset by rewards for providing network resources.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical  findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update  the  mappings  regulary,  based  on  data  of  the  Digital  Token  Identifier  Foundation.  The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
internet_computer is calculated first. For the energy consumption of the token, a fraction of the
energy consumption of the network is attributed to the token, which is determined based on the
activity  of  the  crypto-asset  within  the  network.  When  calculating  the  energy  consumption,  the
Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of  participants  in  the network is  based on assumptions that  are  verified with  best  effort  using
empirical  data.  In  general,  participants  are  assumed  to  be  largely  economically  rational.  As  a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies 

To determine the proportion of  renewable energy usage,  the locations of  the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.
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Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data.  “Share of  electricity  generated by renewables -  Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies 

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information  sites,  open-source  crawlers  and  crawlers  developed  in-house.  If  no  information  is
available  on  the  geographic  distribution  of  the  nodes,  reference  networks  are  used  which  are
comparable  in  terms  of  their  incentivization  structure  and  consensus  mechanism.  This  geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our  World  in  Data.  “Carbon  intensity  of  electricity  generation  -  Ember  and  Energy  Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Filecoin

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Filecoin /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 2409020.85790 kWh/a

S.10 Renewable energy consumption 37.9124136030 %

S.11 Energy intensity 0.00182 kWh

S.12 Scope 1 DLT GHG emission - Controlled 0.00000 tCO2e

S.13 Scope 2 DLT GHG emission - Purchased 801.75410 tCO2e

S.14 GHG intensity 0.00060 kgCO2e

Qualitative information 

S.4 Consensus Mechanism 

Filecoin is present on the following networks: Binance Smart Chain, Filecoin, Huobi.
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Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security. 

Core Components:

1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network’s security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin).  Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security. 

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security. 

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process 

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators.  The  more  BNB staked  and  votes  received,  the  higher  the  chance  of  being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes. 

5.  Block  Production:  The selected validators  take  turns  producing  blocks  in  a  PoA-like  manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network. 

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives 

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if  validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB. 

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and  delegators  share  transaction  fees  as  rewards,  which  provides  continuous  economic
incentives to maintain network security and performance. 

9.  Transaction Fees:  BSC employs low transaction fees,  paid in BNB, making it  cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

Filecoin’s  consensus  mechanism,  Expected Consensus  (EC),  is  designed to  reward data  storage
providers based on the amount of storage they contribute. 

Core Components of Expected Consensus (EC): 

1. Storage Power-Based Block Production: 
Probabilistic Block Selection: Block producers (miners) are chosen probabilistically based on their

storage power, meaning providers with more storage capacity have higher chances of being
selected to produce new blocks. 
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2. Proof of Replication (PoRep): 
Initial  Data  Verification:  Miners  provide  cryptographic  Proof  of  Replication  to  verify  they  are

uniquely storing clients' data at the start of each storage contract. 
3. Proof of Spacetime (PoSt): 

Ongoing Verification: Miners periodically submit Proof of Spacetime to confirm they continue to
store data over the contract’s duration, maintaining data availability and integrity. 

4. Chain Quality and Fork Choice: 
Chain  Quality  Rule:  In  cases  of  chain  splits,  the  network  follows  the  chain  with  the  highest

cumulative storage power, ensuring security by selecting the most robust chain.

The  Huobi  Eco  Chain  (HECO)  blockchain  employs  a  Hybrid-Proof-of-Stake  (HPoS)  consensus
mechanism,  combining  elements  of  Proof-of-Stake  (PoS)  to  enhance  transaction  efficiency  and
scalability. 

Key Features of HECO's Consensus Mechanism: 

1.  Validator Selection:  HECO supports up to 21 validators,  selected based on their  stake in the
network. 

2. Transaction Processing: Validators are responsible for processing transactions and adding blocks
to the blockchain. 

3.  Transaction  Finality:  The  consensus  mechanism  ensures  quick  finality,  allowing  for  rapid
confirmation of transactions. 

4.  Energy Efficiency: By utilizing PoS elements,  HECO reduces energy consumption compared to
traditional Proof-of-Work systems.

S.5 Incentive Mechanisms and Applicable Fees 

Filecoin is present on the following networks: Binance Smart Chain, Filecoin, Huobi.

Binance Smart Chain (BSC) uses the Proof of  Staked Authority (PoSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators. 

Incentive Mechanisms 

1. Validators: 
-  Staking  Rewards:  Validators  must  stake  a  significant  amount  of  BNB  to  participate  in  the

consensus process. They earn rewards in the form of transaction fees and block rewards. 
- Selection Process: Validators are selected based on the amount of BNB staked and the votes

received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks. 

2. Delegators: 
- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases

the validator's total stake and improves their chances of being selected to produce blocks. 
-  Shared  Rewards:  Delegators  earn  a  portion  of  the  rewards  that  validators  receive.  This

incentivizes  token  holders  to  participate  in  the  network’s  security  and  decentralization  by
choosing reliable validators. 

3. Candidates: 
Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB

and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience. 
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4. Economic Security: 
- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.

Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network. 

-  Opportunity  Cost:  Staking  requires  validators  and  delegators  to  lock  up  their  BNB  tokens,
providing an economic incentive to act honestly to avoid losing their staked assets. 

Fees on the Binance Smart Chain 

1. Transaction Fees: 
- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.

These  fees  are  paid  in  BNB  and  are  essential  for  maintaining  network  operations  and
compensating validators. 

-  Dynamic  Fee  Structure:  Transaction  fees  can  vary  based  on  network  congestion  and  the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet. 

2. Block Rewards: 
Incentivizing  Validators:  Validators  earn  block  rewards  in  addition  to  transaction  fees.  These

rewards are distributed to validators for their role in maintaining the network and processing
transactions. 

3. Cross-Chain Fees: 
Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred

between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience. 

4. Smart Contract Fees: 
Deploying  and  interacting  with  smart  contracts  on  BSC  involves  paying  fees  based  on  the

computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

Filecoin incentivizes storage providers (miners) to maintain data integrity and make decentralized
storage available through block rewards and storage fees. 

Incentive Mechanisms: 

1. Block Rewards: 
- Storage-Based Block Rewards: Block rewards in FIL (Filecoin’s native token) are given to storage

providers  selected to  add new blocks,  proportional  to  their  storage power.  These rewards
incentivize  providers  to  contribute  more  storage  to  the  network,  enhancing  security  and
decentralized data availability. 

- Reward Distribution: Providers with higher storage capacity receive rewards more frequently,
creating a direct economic incentive to offer larger storage volumes. 

2. Storage Fees: 
- Client Payments: Clients pay storage providers (miners) in FIL tokens to store data, incentivizing

providers to offer reliable storage. 
-  Market  Pricing:  Storage  costs  are  determined by  supply  and demand,  allowing  competitive,

flexible pricing based on network conditions. 
3. Data Retrieval Payments: 

In addition to storage fees, miners can earn retrieval fees for providing data access to clients.
These  fees  incentivize  storage  providers  to  make  stored  data  readily  accessible,  enabling
Filecoin to support efficient, decentralized data retrieval services. 

Sustainability indicators according to MiCAR 66 (5) 35



4. Slashing and Penalties: 
- If a miner fails to provide Proof of Spacetime, they may face slashing penalties, losing a portion

of their FIL collateral.  This mechanism disincentivizes data tampering or deletion by holding
providers accountable to their storage commitments. 

-  Client  Refunds:  In  cases  of  missed  proofs,  clients  may  receive  refunds  or  compensations,
ensuring  that  the  network  maintains  a  high  standard  of  data  reliability  and  provider
accountability. 

Applicable Fees: 

1. Transaction Fees: 
Filecoin charges transaction fees for standard network operations, paid in FIL. These fees help

maintain network functionality and discourage spam by aligning costs with network resource
usage. 

2. Gas Fees: 
Miners pay gas fees based on the computational resources required to submit PoRep and PoSt

proofs. These fees are integral to the network’s operation, ensuring that participants contribute
fairly to Filecoin’s resource demands. 

3. Storage and Retrieval Fees: 
Clients pay miners for data storage on a contract basis, and retrieval fees are paid when miners

deliver data on request. These fees are tailored to the type and duration of storage services,
providing flexibility in data pricing and availability.

The  Huobi  Eco  Chain  (HECO)  blockchain  employs  a  Hybrid-Proof-of-Stake  (HPoS)  consensus
mechanism,  combining  elements  of  Proof-of-Stake  (PoS)  to  enhance  transaction  efficiency  and
scalability. 

Incentive Mechanism: 

1. Validator Rewards: 
Validators are selected based on their stake in the network. They process transactions and add

blocks to the blockchain. Validators receive rewards in the form of transaction fees for their role
in maintaining the blockchain's integrity. 

2. Staking Participation: 
Users  can  stake  Huobi  Token (HT)  to  become validators  or  delegate  their  tokens  to  existing

validators. Staking helps secure the network and, in return, participants receive a portion of the
transaction fees as rewards. 

Applicable Fees: 

1. Transaction Fees (Gas Fees): 
Users pay gas fees in HT tokens to execute transactions and interact with smart contracts on the

HECO network. These fees compensate validators for processing and validating transactions. 
2. Smart Contract Execution Fees: 

Deploying and interacting with smart contracts incur additional fees, which are also paid in HT
tokens. These fees cover the computational resources required to execute contract code.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical  findings through the use of public information
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sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update  the  mappings  regulary,  based  on  data  of  the  Digital  Token  Identifier  Foundation.  The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
binance_smart_chain, huobi is calculated first. For the energy consumption of the token, a fraction
of the energy consumption of the network is attributed to the token, which is determined based on
the activity of the crypto-asset within the network. When calculating the energy consumption, the
Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of  participants  in  the network is  based on assumptions that  are  verified with  best  effort  using
empirical  data.  In  general,  participants  are  assumed  to  be  largely  economically  rational.  As  a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies 

To determine the proportion of  renewable energy usage,  the locations of  the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data.  “Share of  electricity  generated by renewables -  Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies 

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information  sites,  open-source  crawlers  and  crawlers  developed  in-house.  If  no  information  is
available  on  the  geographic  distribution  of  the  nodes,  reference  networks  are  used  which  are
comparable  in  terms  of  their  incentivization  structure  and  consensus  mechanism.  This  geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our  World  in  Data.  “Carbon  intensity  of  electricity  generation  -  Ember  and  Energy  Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.
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Ethereum Eth

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Ethereum Eth /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 2159953.20000 kWh/a

S.10 Renewable energy consumption 37.9124101186 %

S.11 Energy intensity 0.00010 kWh

S.12 Scope 1 DLT GHG emission - Controlled 0.00000 tCO2e

S.13 Scope 2 DLT GHG emission - Purchased 718.86066 tCO2e

S.14 GHG intensity 0.00003 kgCO2e

Qualitative information 

S.4 Consensus Mechanism 

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity. 

The  network  operates  on  a  slot  and  epoch  system,  where  a  new block  is  proposed  every  12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees 

The  crypto-asset's  PoS  system secures  transactions  through  validator  incentives  and  economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees. 

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity. 
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This  system aims to increase security  by aligning incentives while  making the crypto-asset's  fee
structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies 

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical  findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update  the  mappings  regulary,  based  on  data  of  the  Digital  Token  Identifier  Foundation.  The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies 

To determine the proportion of  renewable energy usage,  the locations of  the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data.  “Share of  electricity  generated by renewables -  Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies 

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information  sites,  open-source  crawlers  and  crawlers  developed  in-house.  If  no  information  is
available  on  the  geographic  distribution  of  the  nodes,  reference  networks  are  used  which  are
comparable  in  terms  of  their  incentivization  structure  and  consensus  mechanism.  This  geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our  World  in  Data.  “Carbon  intensity  of  electricity  generation  -  Ember  and  Energy  Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Cardano ADA
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Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Cardano ADA /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 813103.20000 kWh/a

S.10 Renewable energy consumption 37.4187578605 %

S.11 Energy intensity 0.00114 kWh

S.12 Scope 1 DLT GHG emission - Controlled 0.00000 tCO2e

S.13 Scope 2 DLT GHG emission - Purchased 273.81815 tCO2e

S.14 GHG intensity 0.00039 kgCO2e

Qualitative information 

S.4 Consensus Mechanism 

Core Components:  Cardano uses the Ouroboros consensus mechanism, a Proof  of  Stake (PoS)
protocol designed for scalability, security, and energy efficiency.

Core Concepts:

1. Proof of Stake (PoS): Validators (called slot leaders) are selected based on the amount of ADA
they have staked, rather than solving complex computational puzzles.  Validators propose and
validate blocks, which are added to the blockchain. 

2. Epochs and Slot Leaders: Cardano divides time into epochs (fixed time periods), each of which is
subdivided into slots. Slot leaders are selected for each slot to validate and propose blocks. Slot
leaders are chosen randomly based on the amount of ADA staked. More stake increases the
probability of being selected. Validators are responsible for confirming transactions during their
slot and passing the block to the next slot leader.

3.  Delegation and Staking Pools:  ADA holders can delegate their  tokens to staking pools,  which
increases  the  pool’s  chances  of  being  selected  to  validate  a  block.  The  pool  operator  and
delegators share the rewards based on their stakes. This system ensures that participants who do
not want to operate a full validator node can still earn rewards and contribute to network security
by supporting trusted staking pools.

4. Security and Adversary Resistance: Ouroboros ensures security even in the presence of potential
attacks.  It  assumes  that  adversaries  may  attempt  to  propagate  alternative  chains  or  send
arbitrary  messages.  The  protocol  is  secure  as  long  as  more  than  51% of  the  staked ADA is
controlled by honest participants. Settlement Delay: To protect against adversarial attacks, the
new slot leader must consider the last few blocks as transient. Only the blocks preceding these
are treated as finalized, ensuring that chain finality is secure against manipulation attempts. This
mechanism also allows participants to temporarily go offline and resynchronize as long as they
are not disconnected for more than the settlement delay period.
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5. Chain Selection: Cardano's nodes adopt the longest valid chain rule: each node stores a local
copy of the blockchain and replaces it with any discovered valid, longer chain. This ensures that all
nodes eventually converge on a single version of the blockchain, maintaining network consistency.

S.5 Incentive Mechanisms and Applicable Fees 

Cardano  uses  incentive  mechanisms  to  ensure  network  security  and  decentralization  through
staking rewards, slashing mechanisms, and transaction fees. 

Incentive Mechanisms to Secure Transactions: 

1. Staking Rewards: 
- Validators, known as slot leaders, secure the network by validating transactions and creating

new blocks. To participate, validators must stake ADA, and those with larger stakes are more
likely to be selected as slot leaders. 

- Validators are rewarded with newly minted ADA and transaction fees for successfully producing
blocks and validating transactions. 

- Delegators, who may not wish to run a validator node, can delegate their ADA to staking pools.
By doing so, they contribute to the network’s security and earn a share of the rewards earned
by the pool. The rewards are distributed proportionally based on the amount of ADA delegated.

2. Slashing Mechanism: 
-  To prevent  malicious behavior,  Cardano employs  a  slashing mechanism.  Validators  who act

dishonestly,  fail  to validate transactions properly,  or produce incorrect blocks face penalties
that involve the slashing of a portion of their staked ADA. 

-  This  provides  strong  economic  incentives  for  validators  to  act  honestly  and  ensures  the
network’s integrity and security. 

3. Delegation and Pool Operation: 
- Staking pools can charge operation fees (a margin on rewards) to maintain their infrastructure.

This includes fixed costs set by pool operators. Delegators earn rewards after pool fees are
deducted,  providing  a  balanced  incentive  for  both  operators  and  delegators  to  participate
actively. 

-  Rewards  are  distributed  at  the  end  of  each  epoch,  where  staking  pool  performance  and
participation determine the distribution of ADA rewards to all stakeholders. 

Applicable Fees: 

1. Transaction Fees: 
- Transaction fees on Cardano are paid in ADA and are generally low. They are calculated based

on the  size  of  the  transaction  and the  network’s  current  demand.  These  fees  are  paid  to
validators for including transactions in new blocks. 

- The fee formula is: a + b × size, where a is a constant (typically 0.155381 ADA), b is a coefficient
related to the transaction size (0.000043946 ADA/byte), and size refers to the transaction size
in  bytes.  This  ensures  that  the  fee  adapts  based  on  network  load  and  the  size  of  each
transaction. 

2. Staking Pool Fees: 
-  Staking pool operators charge operational costs and a margin fee, which covers the cost of

running  and maintaining  the  staking  pool.  These fees  vary  between pools  but  ensure  that
operators can continue to provide their services while offering rewards to delegators. 

- After the operator's fee, the remaining rewards are distributed among the delegators based on
the size of their stake.
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S.9 Energy consumption sources and methodologies 

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical  findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update  the  mappings  regulary,  based  on  data  of  the  Digital  Token  Identifier  Foundation.  The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies 

To determine the proportion of  renewable energy usage,  the locations of  the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data.  “Share of  electricity  generated by renewables -  Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies 

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information  sites,  open-source  crawlers  and  crawlers  developed  in-house.  If  no  information  is
available  on  the  geographic  distribution  of  the  nodes,  reference  networks  are  used  which  are
comparable  in  terms  of  their  incentivization  structure  and  consensus  mechanism.  This  geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our  World  in  Data.  “Carbon  intensity  of  electricity  generation  -  Ember  and  Energy  Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Avalanche AVAX
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Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Avalanche AVAX /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 809757.63152 kWh/a

S.10 Renewable energy consumption 36.3152910542 %

S.11 Energy intensity 0.00005 kWh

S.12 Scope 1 DLT GHG emission - Controlled 0.00000 tCO2e

S.13 Scope 2 DLT GHG emission - Purchased 304.03630 tCO2e

S.14 GHG intensity 0.00002 kgCO2e

Qualitative information 

S.4 Consensus Mechanism 

Avalanche AVAX is present on the following networks: Avalanche, Avalanche X Chain.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called
Avalanche  Consensus,  which  involves  three  interconnected  protocols:  Snowball,  Snowflake,  and
Avalanche. 

Avalanche Consensus Process:

1. Snowball Protocol: 
-  Random Sampling:  Each validator randomly samples a small,  constant-sized subset of  other

validators. 
- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred

transaction. 
-  Confidence  Counters:  Validators  maintain  confidence  counters  for  each  transaction,

incrementing them each time a sampled validator supports their preferred transaction. 
-  Decision  Threshold:  Once  the  confidence  counter  exceeds  a  pre-defined  threshold,  the

transaction is considered accepted. 
2. Snowflake Protocol: 

-  Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process.
Validators decide between two conflicting transactions. 

- Binary Confidence: Confidence counters are used to track the preferred binary decision. 
- Finality: When a binary decision reaches a certain confidence level, it becomes final. 

3. Avalanche Protocol: 
- DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing

for parallel processing and higher throughput. 
-  Transaction  Ordering:  Transactions  are  added  to  the  DAG  based  on  their  dependencies,

ensuring a consistent order. 
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- Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT)
consensus,  Avalanche  uses  the  Avalanche  Consensus,  Validators  reach  consensus  on  the
structure and contents of the DAG through repeated Snowball and Snowflake.

The  Avalanche  X-Chain  uses  the  Avalanche  consensus  protocol,  which  relies  on  repeated
subsampling of validators to reach agreement on transactions.

S.5 Incentive Mechanisms and Applicable Fees 

Avalanche AVAX is present on the following networks: Avalanche, Avalanche X Chain.

Avalanche  uses  a  consensus  mechanism  known  as  Avalanche  Consensus,  which  relies  on  a
combination of  validators,  staking,  and a novel  approach to consensus to ensure the network's
security and integrity. 

1. Validators: 

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked
influences their probability of being selected to propose or validate new blocks. 

Rewards: Validators earn rewards for their participation in the consensus process. These rewards
are proportional to the amount of AVAX staked and their uptime and performance in validating
transactions. 

Delegation: Validators can also accept delegations from other token holders. Delegators share in
the rewards based on the amount they delegate, which incentivizes smaller holders to participate
indirectly in securing the network. 

2. Economic Incentives: 

Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards
are distributed from the network’s inflationary issuance of AVAX tokens. 

Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes
fees for simple transactions, smart contract interactions, and the creation of new assets on the
network. 

3. Penalties: 

-  Slashing:  Unlike  some  other  PoS  systems,  Avalanche  does  not  employ  slashing  (i.e.,  the
confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the
financial disincentive of lost future rewards for validators who are not consistently online or act
maliciously. 

-  Uptime Requirements:  Validators  must  maintain  a  high  level  of  uptime and correctly  validate
transactions to continue earning rewards. Poor performance or malicious actions result in missed
rewards, providing a strong economic incentive to act honestly. 

Fees on the Avalanche Blockchain

1. Transaction Fees: 
- Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand

and the complexity of the transactions. This ensures that fees remain fair and proportional to
the network's usage. 

-  Fee Burning:  A portion of  the transaction fees is  burned,  permanently removing them from
circulation. This deflationary mechanism helps to balance the inflation from block rewards and
incentivizes token holders by potentially increasing the value of AVAX over time. 
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2. Smart Contract Fees: 
Execution Costs: Fees for deploying and interacting with smart contracts are determined by the

computational resources required. These fees ensure that the network remains efficient and
that resources are used responsibly. 

3. Asset Creation Fees: 
New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche

network.  These  fees  help  to  prevent  spam and  ensure  that  only  serious  projects  use  the
network's resources.

Validator  incentives  on  the  X-Chain  are  indirect  and  come  from  network-wide  AVAX  issuance.
Transaction fees are fixed and burned to prevent spam and reduce the total supply of AVAX over
time

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical  findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update  the  mappings  regulary,  based  on  data  of  the  Digital  Token  Identifier  Foundation.  The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
avalanche, avalanche_x_chain is calculated first. For the energy consumption of the token, a fraction
of the energy consumption of the network is attributed to the token, which is determined based on
the activity of the crypto-asset within the network. When calculating the energy consumption, the
Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of  participants  in  the network is  based on assumptions that  are  verified with  best  effort  using
empirical  data.  In  general,  participants  are  assumed  to  be  largely  economically  rational.  As  a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies 

To determine the proportion of  renewable energy usage,  the locations of  the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.
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Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data.  “Share of  electricity  generated by renewables -  Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies 

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information  sites,  open-source  crawlers  and  crawlers  developed  in-house.  If  no  information  is
available  on  the  geographic  distribution  of  the  nodes,  reference  networks  are  used  which  are
comparable  in  terms  of  their  incentivization  structure  and  consensus  mechanism.  This  geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our  World  in  Data.  “Carbon  intensity  of  electricity  generation  -  Ember  and  Energy  Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Polkadot DOT

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Polkadot DOT /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 630720.00000 kWh/a

S.10 Renewable energy consumption 39.0267442857 %

S.11 Energy intensity 0.00004 kWh

S.12 Scope 1 DLT GHG emission - Controlled 0.00000 tCO2e

S.13 Scope 2 DLT GHG emission - Purchased 186.14368 tCO2e

S.14 GHG intensity 0.00001 kgCO2e

Qualitative information 

S.4 Consensus Mechanism 

Polkadot DOT is present on the following networks: Astar, Polkadot.
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Astar uses a hybrid consensus mechanism that combines Proof of Stake (PoS) and Delegated Proof
of Stake (DPoS), with the added feature of Sharded Multichain capabilities. The primary goal is to
provide a scalable, interoperable, and decentralized platform for building decentralized applications
(dApps), which can run on multiple blockchains in parallel. 

Key Features of Astar's Consensus Mechanism: 

1. Proof of Stake (PoS): In Astar, validators participate by staking ASTR tokens, the native currency of
the network. The more tokens staked, the higher the chances of being selected as a validator.
Validators are responsible for validating transactions and securing the network. Validators receive
block rewards for their efforts, which are paid in ASTR tokens. 

2. Delegated Proof of Stake (DPoS): Astar incorporates DPoS to allow ASTR token holders to vote for
validators. Token holders delegate their voting power to trusted validators, who then produce
blocks and validate transactions. This ensures greater decentralization by allowing the community
to have a direct say in who validates the network. Delegators receive a share of the block rewards
earned by their selected validators. 

3. Sharded Multichain: Astar’s consensus mechanism allows for multichain execution via Parachains
in  the  Polkadot  ecosystem,  enabling  Astar  to  process  multiple  parallel  chains  and  increase
scalability.  This  sharding mechanism ensures that Astar can scale effectively,  maintaining high
throughput while decentralizing the network. 

4. Finality: Astar leverages Polkadot's GRANDPA (GHOST-based Recursive Ancestor Deriving Prefix
Agreement)  finality  gadget  for  fast  and  deterministic  finality.  Once  a  block  is  finalized,  it  is
irreversible, ensuring the integrity and security of transactions.

Polkadot,  a  heterogeneous  multi-chain  framework  designed  to  enable  different  blockchains  to
interoperate,  uses  a  sophisticated  consensus  mechanism  known  as  Nominated  Proof-of-Stake
(NPoS). This mechanism combines elements of Proof-of-Stake (PoS) and a layered consensus model
involving multiple roles and stages. 

Core Components: 

1.  Validators:  Validators are responsible for producing new blocks and finalizing the relay chain,
Polkadot's main chain. They stake DOT tokens and validate transactions, ensuring the security and
integrity of the network. 

2. Nominators: Nominators delegate their stake to trusted validators, choosing which validators they
believe will act honestly and effectively. They share in the rewards and penalties of the validators
they nominate. 

3. Collators: Collators maintain parachains (individual blockchains that connect to the Polkadot relay
chain) by collecting transactions from users and producing state transition proofs for validators. 

4. Fishermen: Fishermen monitor the network for malicious activity. They report bad behavior to the
validators to help maintain network security. 

Consensus Process: Polkadot's consensus mechanism operates through a combination of two key
protocols: GRANDPA (GHOST-based Recursive Ancestor Deriving Prefix Agreement) and BABE (Blind
Assignment for Blockchain Extension). 

1.  BABE (Block Production):  BABE is  the block production mechanism. It  operates similarly  to a
lottery, where validators are pseudo-randomly assigned slots to produce blocks based on their
stake.  Each validator  signs  the blocks  they  produce,  which are  then propagated through the
network. 

2. GRANDPA (Finality):  GRANDPA is the finality gadget that provides a higher level of security by
finalizing  blocks  after  they  are  produced.  Unlike  traditional  blockchains  where  blocks  are
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considered final  after  a  number  of  confirmations,  GRANDPA allows  for  asynchronous  finality.
Validators vote on chains, and once a supermajority agrees, the chain is finalized instantly. 

Detailed Steps:

1. Block Production (BABE): 
- Slot Allocation: Validators are selected to produce blocks in specific time slots. 
- Block Proposal: The selected validator for a slot proposes a block, including new transactions

and state changes. 
2.  Block  Propagation  and  Preliminary  Consensus:  Proposed  blocks  are  propagated  across  the

network, where other validators verify the correctness of the transactions and state transitions. 
3. Finalization (GRANDPA): 

- Voting on Blocks: Validators vote on the chains they believe to be the correct history. 
-  Supermajority  Agreement:  Once  more  than  two-thirds  of  validators  agree  on  a  block,  it  is

finalized. 
- Instant Finality: This finality process ensures that once a block is finalized, it is irreversible and

becomes part of the canonical chain. 
4.  Rewards  and  Penalties:  Validators  and  nominators  earn  rewards  for  participating  in  the

consensus  process  and maintaining  network  security.  Misbehavior,  such  as  producing  invalid
blocks or being offline, results in penalties, including slashing of staked tokens.

S.5 Incentive Mechanisms and Applicable Fees 

Polkadot DOT is present on the following networks: Astar, Polkadot.

Astar  incentivizes  network  participation  through  block  rewards,  transaction  fees,  and  staking
rewards while encouraging governance via delegated voting. 

Incentive Mechanism: 

1.  Staking  Rewards:  Validators  earn  ASTR  tokens  for  validating  transactions  and  securing  the
network. The more tokens staked, the higher the chances of validating blocks. 

2.  Delegated Proof of Stake (DPoS):  ASTR token holders can delegate their tokens to validators,
sharing in the rewards based on the performance of their chosen validators. 

3. Cross-Chain dApp Rewards: Developers deploying dApps on Astar earn rewards for using the
network’s multichain capabilities. 

4.  Governance Participation:  ASTR token holders  participate  in  on-chain  governance to  vote on
proposals and protocol changes. 

Applicable Fees: 

1.  Transaction  Fees:  Users  pay  fees  in  ASTR  tokens  for  transactions.  These  are  collected  by
validators who process the transactions. 

2. dApp Execution Fees: Developers pay for smart contract execution based on resource demands. 
3. Cross-Chain Fees: Additional fees apply for asset transfers and interactions between different

blockchain networks. 
4. Parachain Slot Fees: Astar incurs fees for its parachain slot on the Polkadot network to ensure

interoperability.

Polkadot uses a consensus mechanism called Nominated Proof-of-Stake (NPoS), which involves a
combination  of  validators,  nominators,  and  a  unique  layered  consensus  process  to  secure  the
network: 
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Incentive Mechanisms:

1. Validators: 
- Staking Rewards: Validators are responsible for producing new blocks and finalizing the relay

chain. They are incentivized with staking rewards, which are distributed in proportion to their
stake  and  their  performance  in  the  consensus  process.  Validators  earn  these  rewards  for
maintaining uptime and correctly validating transactions. 

- Commission: Validators can set a commission rate that they charge on the rewards earned by
their nominators. This incentivizes them to perform well to attract more nominators. 

2. Nominators: 
- Delegation: Nominators stake their tokens by delegating them to trusted validators. They share

in the rewards earned by the validators they support. This mechanism incentivizes nominators
to carefully choose reliable validators. 

- Rewards Distribution: The rewards are distributed among validators and their nominators based
on  the  amount  of  stake  contributed  by  each  party.  This  ensures  that  both  parties  are
incentivized to maintain the network’s security. 

3. Collators: 
Parachain Maintenance: Collators maintain parachains by collecting transactions and producing

state transition proofs for validators. They are incentivized through rewards for their role in
keeping the parachain operational and secure. 

4. Fishermen: 
Monitoring: Fishermen are responsible for monitoring the network for malicious activities. They

are  rewarded  for  identifying  and  reporting  malicious  behavior,  which  helps  maintain  the
network’s security. 

5. Economic Penalties: 
-  Slashing:  Validators and nominators face penalties in the form of slashing if  they engage in

malicious  activities  such  as  double-signing  or  being  offline  for  extended  periods.  Slashing
results in the loss of a portion of their staked tokens, which serves as a strong deterrent against
bad behavior. 

-  Unbonding Period:  To withdraw staked tokens,  participants  must  go through an unbonding
period  during  which  their  tokens  are  still  at  risk  of  being  slashed.  This  ensures  continued
network security even when validators or nominators decide to exit. 

Fees on the Polkadot Blockchain: 

1. Transaction Fees: 
- Dynamic Fees: Transaction fees on Polkadot are dynamic, adjusting based on network demand

and  the  complexity  of  the  transaction.  This  model  ensures  that  fees  remain  fair  and
proportional to the network’s usage. 

- Fee Burn: A portion of the transaction fees is burned (permanently removed from circulation),
which helps to control inflation and can potentially increase the value of the remaining tokens. 

2. Smart Contract Fees: 
Execution Costs: Fees for deploying and interacting with smart contracts on Polkadot are based

on the computational resources required. This encourages efficient use of network resources. 
3. Parachain Slot Auction Fees: 

Bidding for Slots: Projects that want to secure a parachain slot must participate in a slot auction.
They  bid  DOT tokens,  and the  highest  bidders  win  the  right  to  operate  a  parachain  for  a
specified period. This process ensures that only serious projects with significant backing can
secure parachain slots, contributing to the network's overall quality and security.
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S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical  findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update  the  mappings  regulary,  based  on  data  of  the  Digital  Token  Identifier  Foundation.  The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) astar is
calculated first. For the energy consumption of the token, a fraction of the energy consumption of
the network is attributed to the token, which is determined based on the activity of the crypto-asset
within  the network.  When calculating  the energy  consumption,  the Functionally  Fungible  Group
Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset
in  scope.  The  mappings  are  updated  regularly,  based  on  data  of  the  Digital  Token  Identifier
Foundation. The information regarding the hardware used and the number of participants in the
network is based on assumptions that are verified with best effort using empirical data. In general,
participants are assumed to be largely economically rational. As a precautionary principle, we make
assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse
impacts.

S.15 Key energy sources and methodologies 

To determine the proportion of  renewable energy usage,  the locations of  the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data.  “Share of  electricity  generated by renewables -  Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies 

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information  sites,  open-source  crawlers  and  crawlers  developed  in-house.  If  no  information  is
available  on  the  geographic  distribution  of  the  nodes,  reference  networks  are  used  which  are
comparable  in  terms  of  their  incentivization  structure  and  consensus  mechanism.  This  geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.
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Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our  World  in  Data.  “Carbon  intensity  of  electricity  generation  -  Ember  and  Energy  Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical  Review  of  World  Energy”  [original  data].  Retrieved  from  https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Algorand

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Algorand /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 420961.80000 kWh/
a

Qualitative information 

S.4 Consensus Mechanism 

The  Algorand  blockchain  utilizes  a  consensus  mechanism  termed  Pure  Proof-of-Stake  (PPoS).
Consensus, in this context, describes the method by which blocks are selected and appended to the
blockchain.  Algorand employs a verifiable random function (VRF)  to select  leaders who propose
blocks for each round. 

Upon block proposal, a pseudorandomly selected committee of voters is chosen to evaluate the
proposal. If a supermajority of these votes are from honest participants, the block is certified. What
makes this algorithm a Pure Proof of Stake is that users are chosen for committees based on the
number of algos in their accounts. This system leverages random committee selection to maintain
high performance and inclusivity within the network. 

The consensus process involves three stages: 

1. Propose: A leader proposes a new block. 
2. Soft Vote: A committee of voters assesses the proposed block. 
3. Certify Vote: Another committee certifies the block if it meets the required honesty threshold.

Sustainability indicators according to MiCAR 66 (5) 51



S.5 Incentive Mechanisms and Applicable Fees 

Algorand's consensus mechanism, Pure Proof-of-Stake (PPoS), relies on the participation of token
holders (stakers) to ensure the network's security and integrity: 

1. Participation Rewards: 
- Staking Rewards: Users who participate in the consensus protocol by staking their ALGO tokens

earn rewards. These rewards are distributed periodically and are proportional to the amount of
ALGO staked. This incentivizes users to hold and stake their tokens, contributing to network
security and stability. 

- Node Participation Rewards: Validators, also known as participation nodes, are responsible for
proposing and voting on blocks. These nodes receive additional rewards for their active role in
maintaining the network.

2. Transaction Fees: 
- Flat Fee Model: Algorand employs a flat fee model for transactions, which ensures predictability

and simplicity. The standard transaction fee on Algorand is very low (around 0.001 ALGO per
transaction). These fees are paid by users to have their transactions processed and included in
a block. 

- Fee Redistribution: Collected transaction fees are redistributed to participants in the network.
This  includes  stakers  and  validators,  further  incentivizing  their  participation  and  ensuring
continuous network operation. 

3. Economic Security: 
Token  Locking:  To  participate  in  the  consensus  mechanism,  users  must  lock  up  their  ALGO

tokens. This economic stake acts as a security deposit that can be slashed (forfeited) if  the
participant acts maliciously. The potential loss of staked tokens discourages dishonest behavior
and helps maintain network integrity. 

Fees on the Algorand Blockchain 

1. Transaction Fees: 
Algorand  uses  a  flat  transaction  fee  model.  The  current  standard  fee  is  0.001  ALGO  per

transaction. This fee is minimal compared to other blockchain networks, ensuring affordability
and accessibility. 

2. Smart Contract Execution Fees:
Fees for executing smart contracts on Algorand are also designed to be low. These fees are based

on the computational resources required to execute the contract, ensuring that users are only
charged for the actual resources they consume. 

3. Asset Creation Fees: 
Creating new assets (tokens) on the Algorand blockchain involves a small fee. This fee is necessary

to  prevent  spam and ensure that  only  genuine assets  are  created and maintained on the
network.

S.9 Energy consumption sources and methodologies 

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical  findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update  the  mappings  regulary,  based  on  data  of  the  Digital  Token  Identifier  Foundation.  The
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information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Sui

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Sui /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 394725.60000 kWh/
a

Qualitative information 

S.4 Consensus Mechanism 

The Sui blockchain utilizes a Byzantine Fault Tolerant (BFT) consensus mechanism optimized for
high throughput and low latency. 

Core Components:

1. Mysten Consensus Protocol: 
- The Sui consensus is based on Mysten Labs' Byzantine Fault Tolerance (BFT) protocol, which

builds  on  principles  of  Practical  Byzantine  Fault  Tolerance  (pBFT)  but  introduces  key
optimizations for performance. 

- Leaderless Design: Unlike traditional BFT models, Sui does not rely on a single leader to propose
blocks. Validators can propose blocks simultaneously,  increasing efficiency and reducing the
risks associated with leader failure or attacks. 

- Parallel Processing: Transactions can be processed in parallel, maximizing network throughput
by utilizing multiple cores and threads. This allows for faster confirmation of transactions and
high scalability. 

2. Transaction Validation: 
Validators are responsible for receiving transaction requests from clients and processing them.

Each  transaction  includes  digital  signatures  and  must  meet  the  network’s  rules  to  be
considered  valid.  Validators  can  propose  transactions  simultaneously,  unlike  many  other
networks that require a sequential, leader-driven process. 

3. Optimistic Execution: 
Optimistic  Consensus:  Sui  allows  validators  to  process  certain  non-contentious,  independent

transactions without waiting for full consensus. This is known as optimistic execution and helps
reduce transaction latency for many use cases, allowing for fast finality in most cases. 
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4. Finality and Latency: 
The  system  only  requires  three  rounds  of  communication  between  validators  to  finalize  a

transaction.  This  results  in low-latency consensus and rapid transaction confirmation times,
achieving scalability while maintaining security. 

5.Fault Tolerance: 
The  system  can  tolerate  up  to  one-third  of  validators  being  faulty  or  malicious  without

compromising the integrity of the consensus process.

S.5 Incentive Mechanisms and Applicable Fees 

Security and Economic Incentives: 

1. Validators: 
Validators  stake  SUI  tokens  to  participate  in  the  consensus  process.  They  earn  rewards  for

validating transactions and securing the network. 
2. Slashing: 

Validators can be penalized (slashed) for malicious behavior, such as double-signing or failing to
properly  validate transactions.  This helps maintain network security  and incentivizes honest
behavior. 

3. Delegation: 
Token holders can delegate their SUI tokens to trusted validators. In return, they share in the

rewards  earned  by  validators.  This  encourages  widespread  participation  in  securing  the
network. 

Fees on the SUI Blockchain:

1. Transaction Fees: 
Users pay transaction fees to validators for processing and confirming transactions. These fees

are calculated based on the computational resources required to process the transaction. Fees
are paid in SUI tokens, which is the native cryptocurrency of the Sui blockchain. 

2. Dynamic Fee Model: 
The transaction fees on Sui are dynamic, meaning they adjust based on network demand and the

complexity of the transactions being processed.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical  findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update  the  mappings  regulary,  based  on  data  of  the  Digital  Token  Identifier  Foundation.  The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.
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To determine the energy consumption of a token, the energy consumption of the network(s) sui is
calculated first. For the energy consumption of the token, a fraction of the energy consumption of
the network is attributed to the token, which is determined based on the activity of the crypto-asset
within  the network.  When calculating  the energy  consumption,  the Functionally  Fungible  Group
Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset
in  scope.  The  mappings  are  updated  regularly,  based  on  data  of  the  Digital  Token  Identifier
Foundation. The information regarding the hardware used and the number of participants in the
network is based on assumptions that are verified with best effort using empirical data. In general,
participants are assumed to be largely economically rational. As a precautionary principle, we make
assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse
impacts.

Ripple XRP

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Ripple XRP /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 299632.54205 kWh/
a

Qualitative information 

S.4 Consensus Mechanism 

Ripple XRP is present on the following networks: Binance Smart Chain, Klaytn, Ripple.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security. 

Core Components:

1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network’s security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin).  Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security. 

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security. 
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3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process 

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators.  The  more  BNB staked  and  votes  received,  the  higher  the  chance  of  being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes. 

5.  Block  Production:  The selected validators  take  turns  producing  blocks  in  a  PoA-like  manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network. 

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives 

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if  validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB. 

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and  delegators  share  transaction  fees  as  rewards,  which  provides  continuous  economic
incentives to maintain network security and performance. 

9.  Transaction Fees:  BSC employs low transaction fees,  paid in BNB, making it  cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

Klaytn employs a modified Istanbul Byzantine Fault Tolerance (IBFT) consensus algorithm, a variant
of Proof of Authority (PoA), enabling high performance and immediate transaction finality. 

Core Components of Klaytn’s Consensus: 

1. Modified IBFT Algorithm: 
Immediate Transaction Finality: Klaytn’s IBFT algorithm ensures that once a block is validated, it is

immediately final and cannot be reversed. This guarantees that transactions are quickly settled,
providing a secure and efficient user experience. 

2. Klaytn Governance Council: 
- Council-Driven Governance: The Klaytn network is governed by the Klaytn Governance Council, a

consortium of global organizations responsible for selecting and maintaining Consensus Nodes
(CNs). This council-based governance model balances decentralization with performance and
ensures transparency in decision-making. 

- Two-Thirds Majority for Finalization: For a block to be finalized, it must receive signatures from
more than two-thirds of the council members, ensuring broad consensus and network security.

3. Three-Tiered Node Architecture: 
- Consensus Nodes (CNs): The selected validators responsible for producing and validating blocks.

CNs are at the core of the network’s security and stability. 
- Proxy Nodes (PNs): Act as intermediaries, relaying data between CNs and the broader network,

which helps distribute network traffic and improve accessibility. 
- Endpoint Nodes (ENs): Interface directly with end-users, facilitating transactions, executing smart

contracts, and serving as user access points to the Klaytn network.

The Ripple blockchain, specifically the XRP Ledger (XRPL), uses a consensus mechanism known as
the Ripple Protocol Consensus Algorithm (RPCA). It differs from Proof of Work (PoW) and Proof of
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Stake (PoS)  as it  doesn't  rely  on mining or staking but instead leverages trusted validators in a
Federated Byzantine Agreement (FBA) model. 

Core Concepts: 

1. Validators and Unique Node Lists (UNL): Validators are trusted nodes in the network that validate
transactions and propose new ledger updates. Each node maintains a list of trusted validators
known as its Unique Node List (UNL). Consensus is achieved when 80% of the validators in a
node's UNL agree on the validity of a transaction or block. This ensures high levels of security and
decentralization. 

2. Transaction Ordering and Validation: Transactions are broadcast to validators, and once 80% of
the validators agree, the transaction is considered confirmed. Each ledger in the XRPL contains
transaction data, and validators ensure the validity and proper ordering of these transactions. 

Consensus Process: 

1. Proposal Phase: Validators propose new transactions to be added to the ledger. 
2.  Validation Phase: Validators vote on proposed transactions by comparing them to their UNL.

Consensus is achieved when 80% of validators agree. 
3. Finalization: Once consensus is reached, the transactions are written into the new ledger, making

them irreversible and final.

S.5 Incentive Mechanisms and Applicable Fees 

Ripple XRP is present on the following networks: Binance Smart Chain, Klaytn, Ripple.

Binance Smart Chain (BSC) uses the Proof of  Staked Authority (PoSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators. 

Incentive Mechanisms 

1. Validators: 
-  Staking  Rewards:  Validators  must  stake  a  significant  amount  of  BNB  to  participate  in  the

consensus process. They earn rewards in the form of transaction fees and block rewards. 
- Selection Process: Validators are selected based on the amount of BNB staked and the votes

received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks. 

2. Delegators: 
- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases

the validator's total stake and improves their chances of being selected to produce blocks. 
-  Shared  Rewards:  Delegators  earn  a  portion  of  the  rewards  that  validators  receive.  This

incentivizes  token  holders  to  participate  in  the  network’s  security  and  decentralization  by
choosing reliable validators. 

3. Candidates: 
Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB

and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience. 

4. Economic Security: 
- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.

Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network. 

-  Opportunity  Cost:  Staking  requires  validators  and  delegators  to  lock  up  their  BNB  tokens,
providing an economic incentive to act honestly to avoid losing their staked assets. 
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Fees on the Binance Smart Chain 

1. Transaction Fees: 
- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.

These  fees  are  paid  in  BNB  and  are  essential  for  maintaining  network  operations  and
compensating validators. 

-  Dynamic  Fee  Structure:  Transaction  fees  can  vary  based  on  network  congestion  and  the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet. 

2. Block Rewards: 
Incentivizing  Validators:  Validators  earn  block  rewards  in  addition  to  transaction  fees.  These

rewards are distributed to validators for their role in maintaining the network and processing
transactions. 

3. Cross-Chain Fees: 
Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred

between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience. 

4. Smart Contract Fees: 
Deploying  and  interacting  with  smart  contracts  on  BSC  involves  paying  fees  based  on  the

computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

Klaytn’s incentive structure includes block rewards and transaction fees distributed to Consensus
Nodes (CNs) and various network funds, fostering network security, sustainability, and community
development. 

Incentive Mechanisms: 

1. Rewards for Consensus Nodes (CNs): 
- Fixed Block Rewards: CNs earn fixed rewards in KLAY tokens for validating and producing blocks.

This  predictable  income  incentivizes  CNs  to  maintain  active  participation  and  secure  the
network. 

- Transaction Fees: Users pay transaction fees in KLAY tokens, which are collected by the network
and distributed among the CNs as additional rewards, further supporting network security and
stability. 

2. Block Reward Distribution: Governance Council (GC) Reward: 
- GC Block Proposer Reward: 10% of the block reward goes to the specific CN that proposed the

block, incentivizing continuous active participation. 
-  GC  Staking  Award:  40%  of  the  block  reward  is  distributed  among  all  Governance  Council

members who stake KLAY, promoting network security by rewarding staked tokens. 
-  Klaytn Community Fund (KCF):  30% of each block reward is allocated to the KCF to support

community development, dApp creation, and overall ecosystem growth. 
- Klaytn Foundation Fund (KFF): 20% of the block reward goes to the KFF, providing resources for

long-term network sustainability and future development initiatives. 
3. Transaction Fees: 

- User Fees for Network Interaction: Users pay fees in KLAY based on gas usage and gas price for
transactions.  These  fees  are  then  distributed  to  CNs,  incentivizing  efficient  transaction
processing and active participation. 
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Applicable Fees: 

Transaction  Fees:  Transaction  fees  on  Klaytn  are  paid  in  KLAY  and  calculated  based  on  gas
consumption. These fees support network maintenance by compensating validators and fostering
economic sustainability.

The Ripple XRP blockchain uses a unique incentive structure that differs from traditional Proof of
Work (PoW) or Proof of Stake (PoS) systems, focusing on its Ripple Protocol Consensus Algorithm
(RPCA). 

Incentive Mechanisms to Secure Transactions: 

1. Validators: Validators on the Ripple network are not directly compensated with rewards like in
PoW/PoS  models.  Instead,  they  are  incentivized  by  the  utility  and  stability  of  the  network,
particularly financial institutions that benefit from Ripple's efficiency in cross-border payments. 

2.  No  Mining:  Since  Ripple  does  not  use  mining,  it  eliminates  the  need  for  energy-intensive
computations, contributing to fast transaction speeds and scalability. 

Fees on the Ripple XRP Blockchain: 

1. Transaction Fees: Ripple charges minimal transaction fees (typically fractions of an XRP, known as
\drops")  for  each  transaction.  The  purpose  of  these  fees  is  to  prevent  network  spam  and
overload. 

2. Burn Mechanism: A portion of each transaction fee is burned, meaning it's permanently removed
from circulation. This reduces the overall supply of XRP over time, contributing to potential long-
term value stability.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical  findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update  the  mappings  regulary,  based  on  data  of  the  Digital  Token  Identifier  Foundation.  The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
binance_smart_chain, klaytn is calculated first. For the energy consumption of the token, a fraction
of the energy consumption of the network is attributed to the token, which is determined based on
the activity of the crypto-asset within the network. When calculating the energy consumption, the
Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of  participants  in  the network is  based on assumptions that  are  verified with  best  effort  using
empirical  data.  In  general,  participants  are  assumed  to  be  largely  economically  rational.  As  a
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precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

Aptos Coin

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Aptos Coin /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 262800.00000 kWh/
a

Qualitative information 

S.4 Consensus Mechanism 

Aptos utilizes a Proof-of-Stake approach combined with a BFT consensus protocol to ensure high
throughput, low latency, and secure transaction processing. 

Core Components: 

- Parallel Execution: Transactions are processed concurrently using Block-STM, a parallel execution
engine, enabling high performance and scalability. 

- Leader-Based BFT: A leader is selected among validators to propose blocks, while others validate
and finalize transactions. 

-  Dynamic  Validator  Rotation:  Validators  are  rotated  regularly,  enhancing  decentralization  and
preventing collusion. 

- Instant Finality: Transactions achieve finality once validated, ensuring that they are irreversible.

S.5 Incentive Mechanisms and Applicable Fees 

Incentive Mechanism: 

- Validator Rewards: Validators earn rewards in APT tokens for validating transactions and producing
blocks.  Rewards  are  distributed  proportionally  based  on  the  stake  of  validators  and  their
delegators. 

- Delegator Participation: APT token holders can delegate their tokens to validators, earning a share
of the staking rewards without running their own nodes. 

- Slashing Mechanism: Validators face penalties, such as losing staked tokens, for malicious actions
or prolonged inactivity, ensuring accountability and network security. 
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Applicable Fees: 

-  Transaction  Fees:  Users  pay  transaction  fees  in  APT  tokens  for  sending  transactions  and
interacting with smart contracts. 

- Dynamic Fee Adjustment: Fees are dynamically adjusted based on network activity and resource
usage, ensuring cost efficiency and preventing congestion. 

- Fee Distribution: Transaction fees are distributed among validators and delegators, providing an
additional incentive for network participation.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical  findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update  the  mappings  regulary,  based  on  data  of  the  Digital  Token  Identifier  Foundation.  The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
aptos_coin is calculated first.  For the energy consumption of the token, a fraction of the energy
consumption of the network is attributed to the token, which is determined based on the activity of
the crypto-asset within the network.  When calculating the energy consumption,  the Functionally
Fungible  Group  Digital  Token  Identifier  (FFG  DTI)  is  used  -  if  available  -  to  determine  all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of  participants  in  the network is  based on assumptions that  are  verified with  best  effort  using
empirical  data.  In  general,  participants  are  assumed  to  be  largely  economically  rational.  As  a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

Injective Token

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Injective Token /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /
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Field Value Unit

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 242193.11461 kWh/
a

Qualitative information 

S.4 Consensus Mechanism 

Injective  Token is  present  on the following networks:  Binance Smart  Chain,  Cosmos,  Ethereum,
Injective, Osmosis.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security. 

Core Components:

1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network’s security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin).  Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security. 

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security. 

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process 

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators.  The  more  BNB staked  and  votes  received,  the  higher  the  chance  of  being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes. 

5.  Block  Production:  The selected validators  take  turns  producing  blocks  in  a  PoA-like  manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network. 

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives 

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if  validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB. 

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and  delegators  share  transaction  fees  as  rewards,  which  provides  continuous  economic
incentives to maintain network security and performance. 
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9. Transaction Fees:  BSC employs low transaction fees,  paid in BNB, making it  cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

The Cosmos network uses the Cosmos SDK, a modular framework that enables developers to build
custom, application-specific blockchains. Cosmos SDK chains rely on Tendermint Core, a Byzantine
Fault Tolerant (BFT) Proof of Stake (PoS) consensus engine that supports interoperability and fast
transaction finality. 

Core Components: 

1. Tendermint BFT Consensus with Proof of Stake: 
- Validator Selection: Cosmos validators are selected based on the amount of ATOM they stake or

receive from delegators. These validators participate in block proposal and validation through a
two-thirds majority voting system. 

- Security Threshold: Tendermint BFT ensures network security as long as fewer than one-third of
validators act maliciously. 

2. Modular Cosmos SDK Framework: 
-  Inter-Blockchain  Communication  (IBC):  The  Cosmos  SDK  supports  IBC,  allowing  seamless

interoperability between Cosmos-based blockchains. 
- Application Blockchain Interface (ABCI): This interface separates the consensus layer from the

application  layer,  enabling  developers  to  implement  custom  logic  without  modifying  the
consensus engine.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity. 

The  network  operates  on  a  slot  and  epoch  system,  where  a  new block  is  proposed  every  12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Injective operates on a Tendermint-based Proof of  Stake (PoS)  consensus model,  ensuring high
throughput and immediate transaction finality. 

Core Components: 

- Tendermint-based Proof of Stake (PoS): 
Ensures  instant  transaction  finality  and  supports  efficient  block  production  for  high-speed

transactions. 
- Validator Selection: 

Validators are chosen based on the amount of INJ tokens staked, considering both self-staked
and delegated tokens, to maintain a decentralized network. 

- Delegation: 
INJ  holders  can delegate  their  tokens to  validators,  earning a  share of  staking  rewards while

participating in network governance. 
- Instant Finality: 

The Tendermint consensus mechanism provides immediate finality, ensuring transactions cannot
be reversed once validated.
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Osmosis operates on a Proof of Stake (PoS) consensus mechanism, leveraging the Cosmos SDK and
Tendermint Core to provide secure, decentralized, and scalable transaction processing. 

Core Components: 

- Proof of Stake (PoS): Validators are chosen based on the amount of OSMO tokens they stake or
are  delegated  by  other  token  holders.  Validators  are  responsible  for  validating  transactions,
producing blocks, and maintaining network security. 

- Cosmos SDK and Tendermint Core: Osmosis uses Tendermint Core for Byzantine Fault Tolerant
(BFT) consensus, ensuring fast finality and resistance to attacks as long as less than one-third of
validators are malicious. 

-  Decentralized  Governance:  OSMO  token  holders  can  participate  in  governance  by  voting  on
protocol upgrades and network parameters, fostering a community-driven approach to network
development.

S.5 Incentive Mechanisms and Applicable Fees 

Injective  Token is  present  on the following networks:  Binance Smart  Chain,  Cosmos,  Ethereum,
Injective, Osmosis.

Binance Smart Chain (BSC) uses the Proof of  Staked Authority (PoSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators. 

Incentive Mechanisms 

1. Validators: 
-  Staking  Rewards:  Validators  must  stake  a  significant  amount  of  BNB  to  participate  in  the

consensus process. They earn rewards in the form of transaction fees and block rewards. 
- Selection Process: Validators are selected based on the amount of BNB staked and the votes

received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks. 

2. Delegators: 
- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases

the validator's total stake and improves their chances of being selected to produce blocks. 
-  Shared  Rewards:  Delegators  earn  a  portion  of  the  rewards  that  validators  receive.  This

incentivizes  token  holders  to  participate  in  the  network’s  security  and  decentralization  by
choosing reliable validators. 

3. Candidates: 
Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB

and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience. 

4. Economic Security: 
- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.

Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network. 

-  Opportunity  Cost:  Staking  requires  validators  and  delegators  to  lock  up  their  BNB  tokens,
providing an economic incentive to act honestly to avoid losing their staked assets. 
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Fees on the Binance Smart Chain 

1. Transaction Fees: 
- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.

These  fees  are  paid  in  BNB  and  are  essential  for  maintaining  network  operations  and
compensating validators. 

-  Dynamic  Fee  Structure:  Transaction  fees  can  vary  based  on  network  congestion  and  the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet. 

2. Block Rewards: 
Incentivizing  Validators:  Validators  earn  block  rewards  in  addition  to  transaction  fees.  These

rewards are distributed to validators for their role in maintaining the network and processing
transactions. 

3. Cross-Chain Fees: 
Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred

between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience. 

4. Smart Contract Fees: 
Deploying  and  interacting  with  smart  contracts  on  BSC  involves  paying  fees  based  on  the

computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The Cosmos network incentivizes both validators and delegators to secure the network through
staking rewards, funded by transaction fees and newly minted ATOM. 

Incentive Mechanisms: 

1. Staking Rewards for Validators and Delegators: 
ATOM Rewards: Validators earn staking rewards in ATOM tokens for participating in consensus,

with rewards shared with delegators who stake ATOM through delegation. 
2. Slashing for Accountability: 

Penalties for Misconduct: Validators who act maliciously, such as double-signing or staying offline,
face slashing penalties,  which remove a portion of their staked ATOM. Delegators may also
experience  slashing  if  their  chosen  validator  is  penalized,  encouraging  careful  selection  of
trustworthy validators. 

Applicable Fees: 

1. Transaction Fees: 
User-Paid  Fees  in  ATOM:  All  transactions  on  the  Cosmos  Hub  incur  fees  paid  in  ATOM,

compensating validators for transaction processing and helping to prevent network spam. 
2. Customizable Fee Model: 

Custom Token Fees: Cosmos SDK allows individual chains to define their own transaction fees in
tokens other than ATOM, supporting varied application requirements within the ecosystem.

The  crypto-asset's  PoS  system secures  transactions  through  validator  incentives  and  economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees. 

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity. 
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This  system aims to increase security  by aligning incentives while  making the crypto-asset's  fee
structure more predictable and deflationary during high network activity.

Injective incentivizes network participation through staking rewards and a unique transaction fee
model that supports long-term value for INJ tokens. 

Incentive Mechanisms: 

Staking Rewards: 
INJ holders earn rewards for staking their tokens, encouraging active participation in securing the

network. 
Validator Rewards: 

Validators  receive  staking  rewards  and  transaction  fees  for  processing  transactions  and
maintaining network security. 

Applicable Fees: 

Transaction Fees: 
Users pay fees in INJ tokens for network transactions, including smart contract execution and

trading. 
Fee Structure: 

A portion of transaction fees is burned via a weekly on-chain auction, reducing the overall supply
of INJ tokens and supporting a deflationary tokenomics model.

Osmosis incentivizes validators, delegators, and liquidity providers through a combination of staking
rewards, transaction fees, and liquidity incentives. 

Incentive Mechanisms: 

- Validator Rewards: Validators earn rewards from transaction fees and block rewards, distributed in
OSMO tokens, for their role in securing the network and processing transactions. Delegators who
stake their OSMO tokens with validators receive a share of these rewards. 

- Liquidity Provider Rewards: Users providing liquidity to Osmosis pools earn swap fees and may
receive additional incentives in the form of OSMO tokens to encourage liquidity provision. 

- Superfluid Staking: Liquidity providers can participate in superfluid staking, staking a portion of
their OSMO tokens within liquidity pools. This mechanism allows users to earn staking rewards
while maintaining liquidity in the pools

Applicable Fees: 

Transaction Fees: Users pay transaction fees in OSMO tokens for network activities, including swaps,
staking, and governance participation. These fees are distributed to validators and delegators,
incentivizing their continued participation and support for network security.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical  findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. Due to
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the structure of this network, it is not only the mainnet that is responsible for energy consumption.
In  order  to  calculate  the structure  adequately,  a  proportion of  the energy  consumption of  the
connected network, cosmos, must also be taken into account, because the connected network is
also responsible for security. This proportion is determined on the basis of gas consumption. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update  the  mappings  regulary,  based  on  data  of  the  Digital  Token  Identifier  Foundation.  The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
binance_smart_chain, cosmos, ethereum, osmosis is calculated first. For the energy consumption of
the token, a fraction of the energy consumption of the network is attributed to the token, which is
determined based on the  activity  of  the  crypto-asset  within  the  network.  When calculating  the
energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if
available  -  to  determine all  implementations  of  the asset  in  scope.  The mappings  are  updated
regularly, based on data of the Digital Token Identifier Foundation. The information regarding the
hardware used and the number of participants in the network is based on assumptions that are
verified with best effort using empirical  data.  In general,  participants are assumed to be largely
economically rational. As a precautionary principle, we make assumptions on the conservative side
when in doubt, i.e. making higher estimates for the adverse impacts.

Polygon POL

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Polygon POL /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 96015.64764 kWh/
a

Qualitative information 

S.4 Consensus Mechanism 

Polygon POL is present on the following networks: Ethereum, Polygon.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity. 
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The  network  operates  on  a  slot  and  epoch  system,  where  a  new block  is  proposed  every  12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a
hybrid consensus mechanism. Here’s a detailed explanation of how Polygon achieves consensus: 

Core Concepts:

1. Proof of Stake (PoS): 
- Validator Selection: Validators on the Polygon network are selected based on the number of

MATIC  tokens  they  have  staked.  The  more  tokens  staked,  the  higher  the  chance  of  being
selected to validate transactions and produce new blocks. 

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to validators. Delegators share in the rewards earned by validators. 

2. Plasma Chains: 
- Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the

main Ethereum chain. These child chains can process transactions off-chain and submit only
the final state to the Ethereum main chain, significantly increasing throughput and reducing
congestion. 

-  Fraud  Proofs:  Plasma  uses  a  fraud-proof  mechanism  to  ensure  the  security  of  off-chain
transactions. If a fraudulent transaction is detected, it can be challenged and reverted. 

Consensus Process:

1. Transaction Validation: 
Transactions are first validated by validators who have staked MATIC tokens.  These validators

confirm the validity of transactions and include them in blocks. 
2. Block Production: 

-  Proposing  and  Voting:  Validators  propose  new  blocks  based  on  their  staked  tokens  and
participate  in  a  voting  process  to  reach  consensus  on  the  next  block.  The  block  with  the
majority of votes is added to the blockchain. 

- Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain
are submitted to the Ethereum main chain. This process ensures the security and finality of
transactions on the Polygon network. 

3. Plasma Framework: 
-  Child  Chains:  Transactions  can  be  processed  on  child  chains  created  using  the  Plasma

framework. These transactions are validated off-chain and only the final state is submitted to
the Ethereum main chain. 

- Fraud Proofs: If  a fraudulent transaction occurs, it can be challenged within a certain period
using fraud proofs. This mechanism ensures the integrity of off-chain transactions. 

Security and Economic Incentives: 

1. Incentives for Validators: 
-  Staking Rewards:  Validators  earn rewards for  staking MATIC tokens and participating in  the

consensus process. These rewards are distributed in MATIC tokens and are proportional to the
amount staked and the performance of the validator. 

-  Transaction Fees:  Validators also earn a portion of  the transaction fees paid by users.  This
provides an additional financial incentive to maintain the network’s integrity and efficiency. 
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2. Delegation: 
Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate

to. This encourages more token holders to participate in securing the network by choosing
reliable validators. 

3. Economic Security: 
Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This

penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that
validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees 

Polygon POL is present on the following networks: Ethereum, Polygon.

The  crypto-asset's  PoS  system secures  transactions  through  validator  incentives  and  economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees. 

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity. 

This  system aims to increase security  by aligning incentives while  making the crypto-asset's  fee
structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network
security, incentivize participation, and maintain transaction integrity. 

Incentive Mechanisms: 

1. Validators: 
- Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are

selected to validate transactions and produce new blocks based on the number of tokens they
have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction
fees for their services. 

-  Block  Production:  Validators  are  responsible  for  proposing  and  voting  on  new  blocks.  The
selected validator proposes a block, and other validators verify and validate it. Validators are
incentivized to act honestly and efficiently to earn rewards and avoid penalties. 

- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring
the security and finality of transactions processed on Polygon. This provides an additional layer
of security by leveraging Ethereum's robustness. 

2. Delegators: 
- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC

tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators,
incentivizing them to choose reliable and performant validators. 

-  Shared  Rewards:  Rewards  earned  by  validators  are  shared  with  delegators,  based  on  the
proportion  of  tokens  delegated.  This  system  encourages  widespread  participation  and
enhances the network's decentralization. 

3. Economic Security: 
-  Slashing:  Validators  can  be  penalized  through  a  process  called  slashing  if  they  engage  in

malicious behavior  or  fail  to  perform their  duties  correctly.  This  includes double-signing or
going offline for extended periods. Slashing results in the loss of a portion of the staked tokens,
acting as a strong deterrent against dishonest actions. 
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- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to
participate  in  the  consensus  process,  ensuring  they  have  a  vested  interest  in  maintaining
network security and integrity. Fees on the Polygon Blockchain 

4. Transaction Fees: 
-  Low  Fees:  One  of  Polygon's  main  advantages  is  its  low  transaction  fees  compared  to  the

Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to
encourage high transaction throughput and user adoption. 

-  Dynamic Fees:  Fees on Polygon can vary depending on network congestion and transaction
complexity. However, they remain significantly lower than those on Ethereum, making Polygon
an attractive option for users and developers. 

5. Smart Contract Fees: 
Deployment and Execution Costs:  Deploying and interacting with smart  contracts  on Polygon

incurs fees based on the computational resources required. These fees are also paid in MATIC
tokens and are much lower than on Ethereum, making it cost-effective for developers to build
and maintain decentralized applications (dApps) on Polygon. 

6. Plasma Framework: 
State  Transfers  and  Withdrawals:  The  Plasma  framework  allows  for  off-chain  processing  of

transactions, which are periodically batched and committed to the Ethereum main chain. Fees
associated with  these processes  are  also  paid  in  MATIC  tokens,  and they  help  reduce the
overall cost of using the network.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical  findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. Due to
the structure of this network, it is not only the mainnet that is responsible for energy consumption.
In  order  to  calculate  the structure  adequately,  a  proportion of  the energy  consumption of  the
connected network, ethereum, must also be taken into account, because the connected network is
also responsible for security. This proportion is determined on the basis of gas consumption. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update  the  mappings  regulary,  based  on  data  of  the  Digital  Token  Identifier  Foundation.  The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
ethereum is calculated first.  For the energy consumption of  the token,  a fraction of  the energy
consumption of the network is attributed to the token, which is determined based on the activity of
the crypto-asset within the network.  When calculating the energy consumption,  the Functionally
Fungible  Group  Digital  Token  Identifier  (FFG  DTI)  is  used  -  if  available  -  to  determine  all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of  participants  in  the network is  based on assumptions that  are  verified with  best  effort  using
empirical  data.  In  general,  participants  are  assumed  to  be  largely  economically  rational.  As  a
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precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

Celestia

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Celestia /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 83196.38304 kWh/
a

Qualitative information 

S.4 Consensus Mechanism 

Celestia is present on the following networks: Celestia, Injective, Osmosis.

Celestia  employs  a  Proof-of-Stake  (PoS)  consensus  mechanism,  wherein  validators  are  selected
based  on  the  amount  of  TIA  tokens  they  stake.  These  validators  are  responsible  for  ordering
transactions and ensuring data availability within the network. 

Injective operates on a Tendermint-based Proof of  Stake (PoS)  consensus model,  ensuring high
throughput and immediate transaction finality. 

Core Components: 

- Tendermint-based Proof of Stake (PoS): 
Ensures  instant  transaction  finality  and  supports  efficient  block  production  for  high-speed

transactions. 
- Validator Selection: 

Validators are chosen based on the amount of INJ tokens staked, considering both self-staked
and delegated tokens, to maintain a decentralized network. 

- Delegation: 
INJ  holders  can delegate  their  tokens to  validators,  earning a  share of  staking  rewards while

participating in network governance. 
- Instant Finality: 

The Tendermint consensus mechanism provides immediate finality, ensuring transactions cannot
be reversed once validated.

Osmosis operates on a Proof of Stake (PoS) consensus mechanism, leveraging the Cosmos SDK and
Tendermint Core to provide secure, decentralized, and scalable transaction processing. 
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Core Components: 

- Proof of Stake (PoS): Validators are chosen based on the amount of OSMO tokens they stake or
are  delegated  by  other  token  holders.  Validators  are  responsible  for  validating  transactions,
producing blocks, and maintaining network security. 

- Cosmos SDK and Tendermint Core: Osmosis uses Tendermint Core for Byzantine Fault Tolerant
(BFT) consensus, ensuring fast finality and resistance to attacks as long as less than one-third of
validators are malicious. 

-  Decentralized  Governance:  OSMO  token  holders  can  participate  in  governance  by  voting  on
protocol upgrades and network parameters, fostering a community-driven approach to network
development.

S.5 Incentive Mechanisms and Applicable Fees 

Celestia is present on the following networks: Celestia, Injective, Osmosis.

The native token, TIA, serves multiple roles within the Celestia ecosystem. Validators earn rewards in
TIA  for  participating  in  the  consensus  process  and  maintaining  data  availability.  Users  pay
transaction fees in TIA when submitting data to the network.

Injective incentivizes network participation through staking rewards and a unique transaction fee
model that supports long-term value for INJ tokens. 

Incentive Mechanisms: 

Staking Rewards: 
INJ holders earn rewards for staking their tokens, encouraging active participation in securing the

network. 
Validator Rewards: 

Validators  receive  staking  rewards  and  transaction  fees  for  processing  transactions  and
maintaining network security. 

Applicable Fees: 

Transaction Fees: 
Users pay fees in INJ tokens for network transactions, including smart contract execution and

trading. 
Fee Structure: 

A portion of transaction fees is burned via a weekly on-chain auction, reducing the overall supply
of INJ tokens and supporting a deflationary tokenomics model.

Osmosis incentivizes validators, delegators, and liquidity providers through a combination of staking
rewards, transaction fees, and liquidity incentives. 

Incentive Mechanisms: 

- Validator Rewards: Validators earn rewards from transaction fees and block rewards, distributed in
OSMO tokens, for their role in securing the network and processing transactions. Delegators who
stake their OSMO tokens with validators receive a share of these rewards. 

- Liquidity Provider Rewards: Users providing liquidity to Osmosis pools earn swap fees and may
receive additional incentives in the form of OSMO tokens to encourage liquidity provision. 

- Superfluid Staking: Liquidity providers can participate in superfluid staking, staking a portion of
their OSMO tokens within liquidity pools. This mechanism allows users to earn staking rewards
while maintaining liquidity in the pools
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Applicable Fees: 

Transaction Fees: Users pay transaction fees in OSMO tokens for network activities, including swaps,
staking, and governance participation. These fees are distributed to validators and delegators,
incentivizing their continued participation and support for network security.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical  findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update  the  mappings  regulary,  based  on  data  of  the  Digital  Token  Identifier  Foundation.  The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
injective,  osmosis is  calculated first.  For the energy consumption of the token,  a fraction of the
energy consumption of the network is attributed to the token, which is determined based on the
activity  of  the  crypto-asset  within  the  network.  When  calculating  the  energy  consumption,  the
Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of  participants  in  the network is  based on assumptions that  are  verified with  best  effort  using
empirical  data.  In  general,  participants  are  assumed  to  be  largely  economically  rational.  As  a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

Bittensor

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Bittensor /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 25228.80000
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Field Value Unit
kWh/

a

Qualitative information 

S.4 Consensus Mechanism 

Bittensor  employs  a  Proof-of-Stake  consensus  mechanism  tailored  for  integrating  blockchain
technology  with  decentralized  AI,  ensuring  secure,  efficient,  and  reliable  contributions  from  its
participants. 

Proof of Stake (PoS) with Neural Consensus: 

- Bittensor operates on a PoS consensus model, where validators are selected based on the amount
of TAO tokens staked. Validators secure the network by producing and validating blocks, ensuring
transaction integrity. 

-  Neural  Consensus  Integration:  A  unique  feature  of  Bittensor  is  its  neural  consensus,  which
evaluates the quality of work performed by AI models on the network. Nodes are incentivized to
contribute meaningful computations for tasks like AI training, which are validated through peer
review and network-wide voting. 

- Dynamic Validator Selection: The network dynamically adjusts validator participation, prioritizing
nodes that contribute both computational and staking resources effectively. 

- Scalability and Security: The combined PoS and neural consensus model ensures scalability for AI-
centric workloads while maintaining blockchain-level security.

S.5 Incentive Mechanisms and Applicable Fees 

Bittensor incentivizes network participants through token rewards for securing the network and
contributing to its AI capabilities, with a fee structure designed to sustain network operations and
encourage participation. 

Incentive Mechanism: 

-  TAO Rewards for Validators:  Validators earn TAO tokens as rewards for securing the network,
validating transactions, and maintaining blockchain integrity. Rewards are distributed based on
the validator's staked TAO tokens and performance in the consensus process. 

-  AI  Contribution  Rewards:  Nodes  contributing  to  the  network's  AI  computations  (e.g.,  training
models) are rewarded in TAO tokens. Rewards are determined by the quality and relevance of
contributions, as evaluated through the neural consensus mechanism. 

- Delegation Rewards: TAO holders who delegate their tokens to validators earn a share of staking
rewards, encouraging broader participation in network security and governance. 

- Dynamic Incentive Structure: Rewards are dynamically allocated based on network activity and AI
workloads, promoting sustained contribution and high-quality participation. 

Applicable Fees:

- Transaction Fees: Users pay transaction fees in TAO tokens for processing transactions on the
network. Fees are distributed to validators as additional compensation. 

- AI Service Fees: Applications utilizing Bittensor's AI services pay fees in TAO tokens, incentivizing
nodes to perform computations and contribute resources. 
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- Low-Cost Fee Model: The network employs a cost-efficient fee structure to attract developers and
users while ensuring sustainability for validators and contributors.

S.9 Energy consumption sources and methodologies 

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical  findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update  the  mappings  regulary,  based  on  data  of  the  Digital  Token  Identifier  Foundation.  The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Wrapped BTC

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Wrapped BTC /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 13250.68939 kWh/
a

Qualitative information 

S.4 Consensus Mechanism 

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity. 

The  network  operates  on  a  slot  and  epoch  system,  where  a  new block  is  proposed  every  12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
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but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees 

The  crypto-asset's  PoS  system secures  transactions  through  validator  incentives  and  economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees. 

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity. 

This  system aims to increase security  by aligning incentives while  making the crypto-asset's  fee
structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
ethereum is calculated first.  For the energy consumption of  the token,  a fraction of  the energy
consumption of the network is attributed to the token, which is determined based on the activity of
the crypto-asset within the network.  When calculating the energy consumption,  the Functionally
Fungible  Group  Digital  Token  Identifier  (FFG  DTI)  is  used  -  if  available  -  to  determine  all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of  participants  in  the network is  based on assumptions that  are  verified with  best  effort  using
empirical  data.  In  general,  participants  are  assumed  to  be  largely  economically  rational.  As  a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

ChainLink Token

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset ChainLink Token /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 5717.42905 kWh/
a
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Qualitative information 

S.4 Consensus Mechanism 

ChainLink Token is present on the following networks: Arbitrum, Avalanche, Binance Smart Chain,
Ethereum, Fantom, Gnosis Chain, Optimism, Polygon, Solana.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability
and reduce transaction costs. It  assumes that transactions are valid by default and only verifies
them if there's a challenge (optimistic).

Core Components: 

- Sequencer: Orders transactions and creates batches for processing. 
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum. 
- Fraud Proofs: Protect against invalid transactions through an interactive verification process. 

Verification Process: 

1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and
batches them. 

2. State Commitment: These batches are submitted to Ethereum with a state commitment. 
3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud. 
4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to

identify the fraudulent transaction. The final operation is executed on Ethereum to determine the
correct state. 

5.  Rollback and Penalties:  If  fraud is proven, the state is rolled back, and the dishonest party is
penalized. 

Security  and Efficiency:  The combination of  the Sequencer,  bridge,  and interactive fraud proofs
ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging
off-chain computations, Arbitrum can provide high throughput and low fees.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called
Avalanche  Consensus,  which  involves  three  interconnected  protocols:  Snowball,  Snowflake,  and
Avalanche. 

Avalanche Consensus Process:

1. Snowball Protocol: 
-  Random Sampling:  Each validator randomly samples a small,  constant-sized subset of  other

validators. 
- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred

transaction. 
-  Confidence  Counters:  Validators  maintain  confidence  counters  for  each  transaction,

incrementing them each time a sampled validator supports their preferred transaction. 
-  Decision  Threshold:  Once  the  confidence  counter  exceeds  a  pre-defined  threshold,  the

transaction is considered accepted. 
2. Snowflake Protocol: 

-  Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process.
Validators decide between two conflicting transactions. 

- Binary Confidence: Confidence counters are used to track the preferred binary decision. 
- Finality: When a binary decision reaches a certain confidence level, it becomes final. 
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3. Avalanche Protocol: 
- DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing

for parallel processing and higher throughput. 
-  Transaction  Ordering:  Transactions  are  added  to  the  DAG  based  on  their  dependencies,

ensuring a consistent order. 
- Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT)

consensus,  Avalanche  uses  the  Avalanche  Consensus,  Validators  reach  consensus  on  the
structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security. 

Core Components:

1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network’s security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin).  Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security. 

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security. 

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process 

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators.  The  more  BNB staked  and  votes  received,  the  higher  the  chance  of  being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes. 

5.  Block  Production:  The selected validators  take  turns  producing  blocks  in  a  PoA-like  manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network. 

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives 

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if  validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB. 

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and  delegators  share  transaction  fees  as  rewards,  which  provides  continuous  economic
incentives to maintain network security and performance. 

9.  Transaction Fees:  BSC employs low transaction fees,  paid in BNB, making it  cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.
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The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity. 

The  network  operates  on  a  slot  and  epoch  system,  where  a  new block  is  proposed  every  12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Fantom  operates  on  the  Lachesis  Protocol,  an  Asynchronous  Byzantine  Fault  Tolerant  (aBFT)
consensus mechanism designed for fast, secure, and scalable transactions. 

Core Components of Fantom’s Consensus: 

1. Lachesis Protocol (aBFT): 
- Asynchronous and Leaderless: Lachesis allows nodes to reach consensus independently without

relying on a central leader, enhancing decentralization and speed. 
-  DAG Structure:  Instead of a linear blockchain,  Lachesis uses a Directed Acyclic Graph (DAG)

structure,  allowing  multiple  transactions  to  be  processed  in  parallel  across  nodes.  This
structure  supports  high throughput,  making the network  suitable  for  applications  requiring
rapid transaction processing. 

2. Event Blocks and Instant Finality: 
- Event Blocks: Transactions are grouped into event blocks, which are validated asynchronously by

multiple validators.  When enough validators confirm an event block,  it  becomes part of the
Fantom network’s history. 

- Instant Finality: Transactions on Fantom achieve immediate finality, meaning they are confirmed
and cannot be reversed. This property is ideal for applications requiring fast and irreversible
transactions.

Gnosis  Chain  –  Consensus Mechanism Gnosis  Chain  employs  a  dual-layer  structure to  balance
scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components: 

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof
of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO
tokens on the Beacon Chain and validate transactions, ensuring network security and finality. 

- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed,
low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating
an  integrated  framework  where  Layer  1  ensures  security  and  finality,  and  Layer  2  enhances
scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens
and participate in consensus by validating blocks.  This  setup ensures that  validators have an
economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and
the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on
Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows
Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of
a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset
management.

Optimism  is  a  Layer  2  scaling  solution  for  Ethereum  that  uses  Optimistic  Rollups  to  increase
transaction throughput and reduce costs while inheriting the security of the Ethereum main chain. 
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Core Components: 

1. Optimistic Rollups: 
- Rollup Blocks: Transactions are batched into rollup blocks and processed off-chain. 
- State Commitments: The state of these transactions is periodically committed to the Ethereum

main chain. 
2. Sequencers: 

-  Transaction  Ordering:  Sequencers  are  responsible  for  ordering  transactions  and  creating
batches. 

-  State Updates:  Sequencers update the state of the rollup and submit these updates to the
Ethereum main chain. 

-  Block  Production:  They  construct  and  execute  Layer  2  blocks,  which  are  then  posted  to
Ethereum. 

3. Fraud Proofs: 
- Assumption of Validity: Transactions are assumed to be valid by default. 
- Challenge Period: A specific time window during which anyone can challenge a transaction by

submitting a fraud proof. 
- Dispute Resolution: If a transaction is challenged, an interactive verification game is played to

determine its validity. If  fraud is detected, the invalid state is rolled back, and the dishonest
participant is penalized. 

Consensus Process:

1. Transaction Submission: Users submit transactions to the sequencer, which orders them into
batches. 

2. Batch Processing: The sequencer processes these transactions off-chain, updating the Layer 2
state. 

3. State Commitment: The updated state and the batch of transactions are periodically committed
to  the  Ethereum  main  chain.  This  is  done  by  posting  the  state  root  (a  cryptographic  hash
representing the state) and transaction data as calldata on Ethereum. 

4. Fraud Proofs and Challenges: Once a batch is posted, there is a challenge period during which
anyone can submit a fraud proof if they believe a transaction is invalid. 
- Interactive Verification: The dispute is resolved through an interactive verification game, which

involves breaking down the transaction into smaller steps to identify the exact point of fraud. 
- Rollbacks and Penalties: If fraud is proven, the batch is rolled back, and the dishonest actor loses

their staked collateral as a penalty. 
5. Finality: After the challenge period, if no fraud proof is submitted, the batch is considered final.

This means the transactions are accepted as valid, and the state updates are permanent.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a
hybrid consensus mechanism. Here’s a detailed explanation of how Polygon achieves consensus: 

Core Concepts:

1. Proof of Stake (PoS): 
- Validator Selection: Validators on the Polygon network are selected based on the number of

MATIC  tokens  they  have  staked.  The  more  tokens  staked,  the  higher  the  chance  of  being
selected to validate transactions and produce new blocks. 

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to validators. Delegators share in the rewards earned by validators. 

2. Plasma Chains: 
- Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the

main Ethereum chain. These child chains can process transactions off-chain and submit only
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the final state to the Ethereum main chain, significantly increasing throughput and reducing
congestion. 

-  Fraud  Proofs:  Plasma  uses  a  fraud-proof  mechanism  to  ensure  the  security  of  off-chain
transactions. If a fraudulent transaction is detected, it can be challenged and reverted. 

Consensus Process:

1. Transaction Validation: 
Transactions are first validated by validators who have staked MATIC tokens.  These validators

confirm the validity of transactions and include them in blocks. 
2. Block Production: 

-  Proposing  and  Voting:  Validators  propose  new  blocks  based  on  their  staked  tokens  and
participate  in  a  voting  process  to  reach  consensus  on  the  next  block.  The  block  with  the
majority of votes is added to the blockchain. 

- Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain
are submitted to the Ethereum main chain. This process ensures the security and finality of
transactions on the Polygon network. 

3. Plasma Framework: 
-  Child  Chains:  Transactions  can  be  processed  on  child  chains  created  using  the  Plasma

framework. These transactions are validated off-chain and only the final state is submitted to
the Ethereum main chain. 

- Fraud Proofs: If  a fraudulent transaction occurs, it can be challenged within a certain period
using fraud proofs. This mechanism ensures the integrity of off-chain transactions. 

Security and Economic Incentives: 

1. Incentives for Validators: 
-  Staking Rewards:  Validators  earn rewards for  staking MATIC tokens and participating in  the

consensus process. These rewards are distributed in MATIC tokens and are proportional to the
amount staked and the performance of the validator. 

-  Transaction Fees:  Validators also earn a portion of  the transaction fees paid by users.  This
provides an additional financial incentive to maintain the network’s integrity and efficiency. 

2. Delegation: 
Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate

to. This encourages more token holders to participate in securing the network by choosing
reliable validators. 

3. Economic Security: 
Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This

penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that
validators act in the best interest of the network.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH): 
-  Time-Stamped Transactions:  PoH is a cryptographic technique that timestamps transactions,

creating a historical record that proves that an event has occurred at a specific moment in time.
- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash

that includes the transaction and the time it was processed. This sequence of hashes provides
a  verifiable  order  of  events,  enabling  the  network  to  efficiently  agree  on  the  sequence  of
transactions. 
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2. Proof of Stake (PoS): 
- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL

tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks. 

-  Delegation:  Token  holders  can  delegate  their  SOL  tokens  to  validators,  earning  rewards
proportional to their stake while enhancing the network's security. 

Consensus Process: 

1. Transaction Validation: 
Transactions  are  broadcast  to  the  network  and  collected  by  validators.  Each  transaction  is

validated  to  ensure  it  meets  the  network’s  criteria,  such  as  having  correct  signatures  and
sufficient funds. 

2. PoH Sequence Generation: 
A validator generates a sequence of hashes using PoH, each containing a timestamp and the

previous  hash.  This  process  creates  a  historical  record  of  transactions,  establishing  a
cryptographic clock for the network. 

3. Block Production: 
The network uses PoS to select a leader validator based on their stake. The leader is responsible

for  bundling  the  validated  transactions  into  a  block.  The  leader  validator  uses  the  PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order. 

4. Consensus and Finalization: 
Other validators verify the block produced by the leader validator. They check the correctness of

the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized. 

Security and Economic Incentives: 

1. Incentives for Validators: 
- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are

distributed in SOL tokens and are proportional to the validator’s stake and performance. 
- Transaction Fees: Validators also earn transaction fees from the transactions included in the

blocks  they  produce.  These  fees  provide  an  additional  incentive  for  validators  to  process
transactions efficiently. 

2. Security: 
- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking

acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens. 

-  Delegated  Staking:  Token  holders  can  delegate  their  SOL  tokens  to  validators,  enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators. 

3. Economic Penalties: 
Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing

invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees 

ChainLink Token is present on the following networks: Arbitrum, Avalanche, Binance Smart Chain,
Ethereum, Fantom, Gnosis Chain, Optimism, Polygon, Solana.
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Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to
ensure the security and integrity of transactions on its network. The key mechanisms include: 

1. Validators and Sequencers: 
- Sequencers are responsible for ordering transactions and creating batches that are processed

off-chain. They play a critical role in maintaining the efficiency and throughput of the network. 
-  Validators  monitor  the  sequencers'  actions  and  ensure  that  transactions  are  processed

correctly.  Validators  verify  the state  transitions  and ensure that  no invalid  transactions  are
included in the batches. 

2. Fraud Proofs: 
- Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for

quick transaction finality and high throughput.
- Challenge Period: There is a predefined period during which anyone can challenge the validity of

a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious
behavior. 

-  Dispute Resolution:  If  a  challenge is  raised,  an interactive  verification process is  initiated to
pinpoint  the  exact  step  where  fraud  occurred.  If  the  challenge  is  valid,  the  fraudulent
transaction is reverted, and the dishonest actor is penalized. 

3. Economic Incentives: 
- Rewards for Honest Behavior: Participants in the network, such as validators and sequencers,

are incentivized through rewards for performing their  duties honestly  and efficiently.  These
rewards come from transaction fees and potentially other protocol incentives. 

-  Penalties  for  Malicious  Behavior:  Participants  who  engage  in  dishonest  behavior  or  submit
invalid transactions are penalized. This can include slashing of staked tokens or other forms of
economic penalties, which serve to discourage malicious actions. 

Fees on the Arbitrum One Blockchain 

1. Transaction Fees: 
- Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are

typically  lower than Ethereum mainnet fees due to the reduced computational  load on the
main chain. 

- Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer.
This fee covers the cost of processing the transaction and ensuring its inclusion in a batch. 

2. L1 Data Fees: 
- Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are

posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee,
which accounts for the gas required to publish these state updates on Ethereum. 

-  Cost Sharing:  Because transactions are batched, the fixed costs of posting state updates to
Ethereum are spread across multiple transactions, making it more cost-effective for users.

Avalanche  uses  a  consensus  mechanism  known  as  Avalanche  Consensus,  which  relies  on  a
combination of  validators,  staking,  and a novel  approach to consensus to ensure the network's
security and integrity. 

1. Validators: 

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked
influences their probability of being selected to propose or validate new blocks. 

Rewards: Validators earn rewards for their participation in the consensus process. These rewards
are proportional to the amount of AVAX staked and their uptime and performance in validating
transactions. 
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Delegation: Validators can also accept delegations from other token holders. Delegators share in
the rewards based on the amount they delegate, which incentivizes smaller holders to participate
indirectly in securing the network. 

2. Economic Incentives: 

Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards
are distributed from the network’s inflationary issuance of AVAX tokens. 

Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes
fees for simple transactions, smart contract interactions, and the creation of new assets on the
network. 

3. Penalties: 

-  Slashing:  Unlike  some  other  PoS  systems,  Avalanche  does  not  employ  slashing  (i.e.,  the
confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the
financial disincentive of lost future rewards for validators who are not consistently online or act
maliciously. 

-  Uptime Requirements:  Validators  must  maintain  a  high  level  of  uptime and correctly  validate
transactions to continue earning rewards. Poor performance or malicious actions result in missed
rewards, providing a strong economic incentive to act honestly. 

Fees on the Avalanche Blockchain

1. Transaction Fees: 
- Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand

and the complexity of the transactions. This ensures that fees remain fair and proportional to
the network's usage. 

-  Fee Burning:  A portion of  the transaction fees is  burned,  permanently removing them from
circulation. This deflationary mechanism helps to balance the inflation from block rewards and
incentivizes token holders by potentially increasing the value of AVAX over time. 

2. Smart Contract Fees: 
Execution Costs: Fees for deploying and interacting with smart contracts are determined by the

computational resources required. These fees ensure that the network remains efficient and
that resources are used responsibly. 

3. Asset Creation Fees: 
New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche

network.  These  fees  help  to  prevent  spam and  ensure  that  only  serious  projects  use  the
network's resources.

Binance Smart Chain (BSC) uses the Proof of  Staked Authority (PoSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators. 

Incentive Mechanisms 

1. Validators: 
-  Staking  Rewards:  Validators  must  stake  a  significant  amount  of  BNB  to  participate  in  the

consensus process. They earn rewards in the form of transaction fees and block rewards. 
- Selection Process: Validators are selected based on the amount of BNB staked and the votes

received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks. 

2. Delegators: 
- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases

the validator's total stake and improves their chances of being selected to produce blocks. 
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-  Shared  Rewards:  Delegators  earn  a  portion  of  the  rewards  that  validators  receive.  This
incentivizes  token  holders  to  participate  in  the  network’s  security  and  decentralization  by
choosing reliable validators. 

3. Candidates: 
Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB

and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience. 

4. Economic Security: 
- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.

Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network. 

-  Opportunity  Cost:  Staking  requires  validators  and  delegators  to  lock  up  their  BNB  tokens,
providing an economic incentive to act honestly to avoid losing their staked assets. 

Fees on the Binance Smart Chain 

1. Transaction Fees: 
- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.

These  fees  are  paid  in  BNB  and  are  essential  for  maintaining  network  operations  and
compensating validators. 

-  Dynamic  Fee  Structure:  Transaction  fees  can  vary  based  on  network  congestion  and  the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet. 

2. Block Rewards: 
Incentivizing  Validators:  Validators  earn  block  rewards  in  addition  to  transaction  fees.  These

rewards are distributed to validators for their role in maintaining the network and processing
transactions. 

3. Cross-Chain Fees: 
Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred

between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience. 

4. Smart Contract Fees: 
Deploying  and  interacting  with  smart  contracts  on  BSC  involves  paying  fees  based  on  the

computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The  crypto-asset's  PoS  system secures  transactions  through  validator  incentives  and  economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees. 

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity. 

This  system aims to increase security  by aligning incentives while  making the crypto-asset's  fee
structure more predictable and deflationary during high network activity.

Fantom’s incentive model promotes network security through staking rewards, transaction fees, and
delegation options, encouraging broad participation. 
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Incentive Mechanisms: 

1. Staking Rewards for Validators: 
- Earning Rewards in FTM: Validators who participate in the consensus process earn rewards in

FTM tokens, proportional to the amount they have staked. This incentivizes validators to actively
secure the network. 

- Dynamic Staking Rate: Fantom’s staking reward rate is dynamic, adjusting based on total FTM
staked  across  the  network.  As  more  FTM  is  staked,  individual  rewards  may  decrease,
maintaining a balanced reward structure that supports long-term network security. 

2. Delegation for Token Holders: 
Delegated Staking: Users who do not operate validator nodes can delegate their FTM tokens to

validators.  In  return,  they  share  in  the  staking  rewards,  encouraging  wider  participation  in
securing the network. 

Applicable Fees: 

- Transaction Fees in FTM: Users pay transaction fees in FTM tokens. The network’s high throughput
and DAG structure keep fees low, making Fantom ideal for decentralized applications (dApps)
requiring frequent transactions.

- Efficient Fee Model: The low fees and scalability of the network make it cost-effective for users,
fostering a favorable environment for high-volume applications.

The Gnosis Chain’s incentive and fee models encourage both validator participation and network
accessibility,  using  a  dual-token  system to  maintain  low  transaction  costs  and  effective  staking
rewards. 

Incentive Mechanisms: 

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for
their participation in consensus and securing the network. 

-  Delegation Model:  GNO holders who do not operate validator nodes can delegate their  GNO
tokens  to  validators,  allowing  them  to  share  in  staking  rewards  and  encouraging  broader
participation in network security. 

- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-
term network security incentives with token holders’ economic interests. 

- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The
use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and
developers. 

Applicable Fees: 

Transaction Fees in xDai  Users pay transaction fees in xDai,  the stable fee token,  making costs
affordable and predictable. This model is especially suited for high-frequency applications and
dApps  where  low  transaction  fees  are  essential.  xDai  transaction  fees  are  redistributed  to
validators as part of their compensation, aligning their rewards with network activity. Delegated
Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by
delegating  their  tokens  to  active  validators,  promoting  user  participation  in  network  security
without requiring direct involvement in consensus operations.

Optimism, an Ethereum Layer 2 scaling solution, uses Optimistic Rollups to increase transaction
throughput and reduce costs while maintaining security and decentralization. 
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Incentive Mechanisms: 

1. Sequencers: 
- Transaction Ordering: Sequencers are responsible for ordering and batching transactions off-

chain. They play a critical role in maintaining the efficiency and speed of the network. 
-  Economic  Incentives:  Sequencers  earn  transaction  fees  from  users.  These  fees  incentivize

sequencers to process transactions quickly and accurately. 
2. Validators and Fraud Proofs: 

- Assumption of Validity: In Optimistic Rollups, transactions are assumed to be valid by default.
This allows for quick transaction finality. 

-  Challenge  Mechanism:  Validators  (or  anyone)  can  challenge  the  validity  of  a  transaction  by
submitting a fraud proof during a specified challenge period.  This mechanism ensures that
invalid transactions are detected and reverted. 

- Challenge Rewards: Successful challengers are rewarded for identifying and proving fraudulent
transactions.  This  incentivizes  participants  to  actively  monitor  the  network  for  invalid
transactions, thereby enhancing security. 

3. Economic Penalties: 
-  Fraud  Proof  Penalties:  If  a  sequencer  includes  an  invalid  transaction  and  it  is  successfully

challenged, they face economic penalties, such as losing a portion of their staked collateral. This
discourages dishonest behavior. 

- Inactivity and Misbehavior: Validators and sequencers are also incentivized to remain active and
behave correctly, as inactivity or misbehavior can lead to penalties and loss of rewards. 

Fees Applicable on the Optimism Layer 2 Protocol:

1. Transaction Fees: 
- Layer 2 Transaction Fees: Users pay fees for transactions processed on the Layer 2 network.

These fees are generally lower than Ethereum mainnet fees due to the reduced computational
load on the main chain. 

-  Cost  Efficiency:  By batching multiple transactions into a single batch,  Optimism reduces the
overall cost per transaction, making it more economical for users. 

2. L1 Data Fees:
-  Posting  Batches to  Ethereum:  Periodically,  the state  updates  from Layer  2  transactions are

posted to the Ethereum mainnet as calldata. This involves a fee known as the L1 data fee, which
covers the gas cost of publishing these state updates on Ethereum. 

- Cost Sharing: The fixed costs of posting state updates to Ethereum are spread across multiple
transactions within a batch, reducing the cost burden on individual transactions. 

3. Smart Contract Fees: 
Execution Costs: Fees for deploying and interacting with smart contracts on Optimism are based

on the computational resources required. This ensures that users are charged proportionally
for the resources they consume.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network
security, incentivize participation, and maintain transaction integrity. 

Incentive Mechanisms: 

1. Validators: 
- Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are

selected to validate transactions and produce new blocks based on the number of tokens they
have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction
fees for their services. 
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-  Block  Production:  Validators  are  responsible  for  proposing  and  voting  on  new  blocks.  The
selected validator proposes a block, and other validators verify and validate it. Validators are
incentivized to act honestly and efficiently to earn rewards and avoid penalties. 

- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring
the security and finality of transactions processed on Polygon. This provides an additional layer
of security by leveraging Ethereum's robustness. 

2. Delegators: 
- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC

tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators,
incentivizing them to choose reliable and performant validators. 

-  Shared  Rewards:  Rewards  earned  by  validators  are  shared  with  delegators,  based  on  the
proportion  of  tokens  delegated.  This  system  encourages  widespread  participation  and
enhances the network's decentralization. 

3. Economic Security: 
-  Slashing:  Validators  can  be  penalized  through  a  process  called  slashing  if  they  engage  in

malicious behavior  or  fail  to  perform their  duties  correctly.  This  includes double-signing or
going offline for extended periods. Slashing results in the loss of a portion of the staked tokens,
acting as a strong deterrent against dishonest actions. 

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to
participate  in  the  consensus  process,  ensuring  they  have  a  vested  interest  in  maintaining
network security and integrity. Fees on the Polygon Blockchain 

4. Transaction Fees: 
-  Low  Fees:  One  of  Polygon's  main  advantages  is  its  low  transaction  fees  compared  to  the

Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to
encourage high transaction throughput and user adoption. 

-  Dynamic Fees:  Fees on Polygon can vary depending on network congestion and transaction
complexity. However, they remain significantly lower than those on Ethereum, making Polygon
an attractive option for users and developers. 

5. Smart Contract Fees: 
Deployment and Execution Costs:  Deploying and interacting with smart  contracts  on Polygon

incurs fees based on the computational resources required. These fees are also paid in MATIC
tokens and are much lower than on Ethereum, making it cost-effective for developers to build
and maintain decentralized applications (dApps) on Polygon. 

6. Plasma Framework: 
State  Transfers  and  Withdrawals:  The  Plasma  framework  allows  for  off-chain  processing  of

transactions, which are periodically batched and committed to the Ethereum main chain. Fees
associated with  these processes  are  also  paid  in  MATIC  tokens,  and they  help  reduce the
overall cost of using the network.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.

Incentive Mechanisms:

1. Validators: 
- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.

They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks. 

-  Transaction  Fees:  Validators  earn  a  portion  of  the  transaction  fees  paid  by  users  for  the
transactions  they  include  in  the  blocks.  This  provides  an  additional  financial  incentive  for
validators to process transactions efficiently and maintain the network's integrity. 
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2. Delegators: 
- Delegated Staking: Token holders who do not wish to run a validator node can delegate their

SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This  encourages  widespread  participation  in  securing  the  network  and  ensures
decentralization. 

3. Economic Security: 
- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or

being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network. 

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain 

Transaction Fees: 

1. Low and Predictable Fees: 
Solana is designed to handle a high throughput of transactions, which helps keep fees low and

predictable.  The average transaction fee on Solana is  significantly lower compared to other
blockchains like Ethereum. 

2. Fee Structure: 
Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth. 
3. Rent Fees: 

State  Storage:  Solana  charges  rent  fees  for  storing  data  on  the  blockchain.  These  fees  are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network. 

4. Smart Contract Fees: 
Execution  Costs:  Similar  to  transaction  fees,  fees  for  deploying  and  interacting  with  smart

contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
arbitrum,  avalanche,  binance_smart_chain,  ethereum,  fantom,  gnosis_chain,  optimism,  polygon,
solana  is  calculated  first.  For  the  energy  consumption  of  the  token,  a  fraction  of  the  energy
consumption of the network is attributed to the token, which is determined based on the activity of
the crypto-asset within the network.  When calculating the energy consumption,  the Functionally
Fungible  Group  Digital  Token  Identifier  (FFG  DTI)  is  used  -  if  available  -  to  determine  all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of  participants  in  the network is  based on assumptions that  are  verified with  best  effort  using
empirical  data.  In  general,  participants  are  assumed  to  be  largely  economically  rational.  As  a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

Aave Token
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Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Aave Token /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 2685.84213 kWh/
a

Qualitative information 

S.4 Consensus Mechanism 

Aave  Token  is  present  on  the  following  networks:  Avalanche,  Binance  Smart  Chain,  Ethereum,
Gnosis Chain, Huobi, Near Protocol, Polygon, Solana.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called
Avalanche  Consensus,  which  involves  three  interconnected  protocols:  Snowball,  Snowflake,  and
Avalanche. 

Avalanche Consensus Process:

1. Snowball Protocol: 
-  Random Sampling:  Each validator randomly samples a small,  constant-sized subset of  other

validators. 
- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred

transaction. 
-  Confidence  Counters:  Validators  maintain  confidence  counters  for  each  transaction,

incrementing them each time a sampled validator supports their preferred transaction. 
-  Decision  Threshold:  Once  the  confidence  counter  exceeds  a  pre-defined  threshold,  the

transaction is considered accepted. 
2. Snowflake Protocol: 

-  Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process.
Validators decide between two conflicting transactions. 

- Binary Confidence: Confidence counters are used to track the preferred binary decision. 
- Finality: When a binary decision reaches a certain confidence level, it becomes final. 

3. Avalanche Protocol: 
- DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing

for parallel processing and higher throughput. 
-  Transaction  Ordering:  Transactions  are  added  to  the  DAG  based  on  their  dependencies,

ensuring a consistent order. 
- Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT)

consensus,  Avalanche  uses  the  Avalanche  Consensus,  Validators  reach  consensus  on  the
structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
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This method ensures fast block times and low fees while maintaining a level of decentralization and
security. 

Core Components:

1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network’s security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin).  Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security. 

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security. 

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process 

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators.  The  more  BNB staked  and  votes  received,  the  higher  the  chance  of  being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes. 

5.  Block  Production:  The selected validators  take  turns  producing  blocks  in  a  PoA-like  manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network. 

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives 

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if  validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB. 

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and  delegators  share  transaction  fees  as  rewards,  which  provides  continuous  economic
incentives to maintain network security and performance. 

9.  Transaction Fees:  BSC employs low transaction fees,  paid in BNB, making it  cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity. 

The  network  operates  on  a  slot  and  epoch  system,  where  a  new block  is  proposed  every  12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.
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Gnosis  Chain  –  Consensus Mechanism Gnosis  Chain  employs  a  dual-layer  structure to  balance
scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components: 

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof
of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO
tokens on the Beacon Chain and validate transactions, ensuring network security and finality. 

- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed,
low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating
an  integrated  framework  where  Layer  1  ensures  security  and  finality,  and  Layer  2  enhances
scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens
and participate in consensus by validating blocks.  This  setup ensures that  validators have an
economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and
the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on
Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows
Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of
a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset
management.

The  Huobi  Eco  Chain  (HECO)  blockchain  employs  a  Hybrid-Proof-of-Stake  (HPoS)  consensus
mechanism,  combining  elements  of  Proof-of-Stake  (PoS)  to  enhance  transaction  efficiency  and
scalability. 

Key Features of HECO's Consensus Mechanism: 

1.  Validator Selection:  HECO supports up to 21 validators,  selected based on their  stake in the
network. 

2. Transaction Processing: Validators are responsible for processing transactions and adding blocks
to the blockchain. 

3.  Transaction  Finality:  The  consensus  mechanism  ensures  quick  finality,  allowing  for  rapid
confirmation of transactions. 

4.  Energy Efficiency: By utilizing PoS elements,  HECO reduces energy consumption compared to
traditional Proof-of-Work systems.

The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a
novel approach called Doomslug,  which enables high efficiency,  fast transaction processing,  and
secure finality in its operations.

Core Concepts:

1. Doomslug and Proof of Stake: 
-  NEAR's  consensus  mechanism primarily  revolves  around  PoS,  where  validators  stake  NEAR

tokens to participate in securing the network. However, NEAR's implementation is enhanced
with the Doomslug protocol. 

- Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in
two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds
of validators approve the block, ensuring rapid transaction confirmation. 

2. Sharding with Nightshade: 
- NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into

multiple  shards,  enabling  parallel  processing  of  transactions  across  the  network,  thus
significantly increasing throughput.  Each shard processes a portion of transactions,  and the
outcomes are merged into a single "snapshot" block. 
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- This sharding approach ensures scalability, allowing the network to grow and handle increasing
demand efficiently. 

Consensus Process:

1. Validator Selection: 
- Validators are selected to propose and validate blocks based on the amount of NEAR tokens

staked. This selection process is designed to ensure that only validators with significant stakes
and community trust participate in securing the network. 

2. Transaction Finality: 
-  NEAR  achieves  transaction  finality  through  its  PoS-based  system,  where  validators  vote  on

blocks.  Once  two-thirds  of  validators  approve  a  block,  it  reaches  finality  under  Doomslug,
meaning that no forks can alter the confirmed state. 

3. Epochs and Rotation: 
- Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in

which validators  are reshuffled,  and new block proposers  are selected,  ensuring a  balance
between performance and decentralization.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a
hybrid consensus mechanism. Here’s a detailed explanation of how Polygon achieves consensus: 

Core Concepts:

1. Proof of Stake (PoS): 
- Validator Selection: Validators on the Polygon network are selected based on the number of

MATIC  tokens  they  have  staked.  The  more  tokens  staked,  the  higher  the  chance  of  being
selected to validate transactions and produce new blocks. 

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to validators. Delegators share in the rewards earned by validators. 

2. Plasma Chains: 
- Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the

main Ethereum chain. These child chains can process transactions off-chain and submit only
the final state to the Ethereum main chain, significantly increasing throughput and reducing
congestion. 

-  Fraud  Proofs:  Plasma  uses  a  fraud-proof  mechanism  to  ensure  the  security  of  off-chain
transactions. If a fraudulent transaction is detected, it can be challenged and reverted. 

Consensus Process:

1. Transaction Validation: 
Transactions are first validated by validators who have staked MATIC tokens.  These validators

confirm the validity of transactions and include them in blocks. 
2. Block Production: 

-  Proposing  and  Voting:  Validators  propose  new  blocks  based  on  their  staked  tokens  and
participate  in  a  voting  process  to  reach  consensus  on  the  next  block.  The  block  with  the
majority of votes is added to the blockchain. 

- Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain
are submitted to the Ethereum main chain. This process ensures the security and finality of
transactions on the Polygon network. 

3. Plasma Framework: 
-  Child  Chains:  Transactions  can  be  processed  on  child  chains  created  using  the  Plasma

framework. These transactions are validated off-chain and only the final state is submitted to
the Ethereum main chain. 
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- Fraud Proofs: If  a fraudulent transaction occurs, it can be challenged within a certain period
using fraud proofs. This mechanism ensures the integrity of off-chain transactions. 

Security and Economic Incentives: 

1. Incentives for Validators: 
-  Staking Rewards:  Validators  earn rewards for  staking MATIC tokens and participating in  the

consensus process. These rewards are distributed in MATIC tokens and are proportional to the
amount staked and the performance of the validator. 

-  Transaction Fees:  Validators also earn a portion of  the transaction fees paid by users.  This
provides an additional financial incentive to maintain the network’s integrity and efficiency. 

2. Delegation: 
Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate

to. This encourages more token holders to participate in securing the network by choosing
reliable validators. 

3. Economic Security: 
Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This

penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that
validators act in the best interest of the network.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH): 
-  Time-Stamped Transactions:  PoH is a cryptographic technique that timestamps transactions,

creating a historical record that proves that an event has occurred at a specific moment in time.
- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash

that includes the transaction and the time it was processed. This sequence of hashes provides
a  verifiable  order  of  events,  enabling  the  network  to  efficiently  agree  on  the  sequence  of
transactions. 

2. Proof of Stake (PoS): 
- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL

tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks. 

-  Delegation:  Token  holders  can  delegate  their  SOL  tokens  to  validators,  earning  rewards
proportional to their stake while enhancing the network's security. 

Consensus Process: 

1. Transaction Validation: 
Transactions  are  broadcast  to  the  network  and  collected  by  validators.  Each  transaction  is

validated  to  ensure  it  meets  the  network’s  criteria,  such  as  having  correct  signatures  and
sufficient funds. 

2. PoH Sequence Generation: 
A validator generates a sequence of hashes using PoH, each containing a timestamp and the

previous  hash.  This  process  creates  a  historical  record  of  transactions,  establishing  a
cryptographic clock for the network. 

3. Block Production: 
The network uses PoS to select a leader validator based on their stake. The leader is responsible

for  bundling  the  validated  transactions  into  a  block.  The  leader  validator  uses  the  PoH
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sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order. 

4. Consensus and Finalization: 
Other validators verify the block produced by the leader validator. They check the correctness of

the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized. 

Security and Economic Incentives: 

1. Incentives for Validators: 
- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are

distributed in SOL tokens and are proportional to the validator’s stake and performance. 
- Transaction Fees: Validators also earn transaction fees from the transactions included in the

blocks  they  produce.  These  fees  provide  an  additional  incentive  for  validators  to  process
transactions efficiently. 

2. Security: 
- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking

acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens. 

-  Delegated  Staking:  Token  holders  can  delegate  their  SOL  tokens  to  validators,  enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators. 

3. Economic Penalties: 
Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing

invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees 

Aave  Token  is  present  on  the  following  networks:  Avalanche,  Binance  Smart  Chain,  Ethereum,
Gnosis Chain, Huobi, Near Protocol, Polygon, Solana.

Avalanche  uses  a  consensus  mechanism  known  as  Avalanche  Consensus,  which  relies  on  a
combination of  validators,  staking,  and a novel  approach to consensus to ensure the network's
security and integrity. 

1. Validators: 

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked
influences their probability of being selected to propose or validate new blocks. 

Rewards: Validators earn rewards for their participation in the consensus process. These rewards
are proportional to the amount of AVAX staked and their uptime and performance in validating
transactions. 

Delegation: Validators can also accept delegations from other token holders. Delegators share in
the rewards based on the amount they delegate, which incentivizes smaller holders to participate
indirectly in securing the network. 

2. Economic Incentives: 

Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards
are distributed from the network’s inflationary issuance of AVAX tokens. 
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Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes
fees for simple transactions, smart contract interactions, and the creation of new assets on the
network. 

3. Penalties: 

-  Slashing:  Unlike  some  other  PoS  systems,  Avalanche  does  not  employ  slashing  (i.e.,  the
confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the
financial disincentive of lost future rewards for validators who are not consistently online or act
maliciously. 

-  Uptime Requirements:  Validators  must  maintain  a  high  level  of  uptime and correctly  validate
transactions to continue earning rewards. Poor performance or malicious actions result in missed
rewards, providing a strong economic incentive to act honestly. 

Fees on the Avalanche Blockchain

1. Transaction Fees: 
- Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand

and the complexity of the transactions. This ensures that fees remain fair and proportional to
the network's usage. 

-  Fee Burning:  A portion of  the transaction fees is  burned,  permanently removing them from
circulation. This deflationary mechanism helps to balance the inflation from block rewards and
incentivizes token holders by potentially increasing the value of AVAX over time. 

2. Smart Contract Fees: 
Execution Costs: Fees for deploying and interacting with smart contracts are determined by the

computational resources required. These fees ensure that the network remains efficient and
that resources are used responsibly. 

3. Asset Creation Fees: 
New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche

network.  These  fees  help  to  prevent  spam and  ensure  that  only  serious  projects  use  the
network's resources.

Binance Smart Chain (BSC) uses the Proof of  Staked Authority (PoSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators. 

Incentive Mechanisms 

1. Validators: 
-  Staking  Rewards:  Validators  must  stake  a  significant  amount  of  BNB  to  participate  in  the

consensus process. They earn rewards in the form of transaction fees and block rewards. 
- Selection Process: Validators are selected based on the amount of BNB staked and the votes

received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks. 

2. Delegators: 
- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases

the validator's total stake and improves their chances of being selected to produce blocks. 
-  Shared  Rewards:  Delegators  earn  a  portion  of  the  rewards  that  validators  receive.  This

incentivizes  token  holders  to  participate  in  the  network’s  security  and  decentralization  by
choosing reliable validators. 

3. Candidates: 
Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB

and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience. 
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4. Economic Security: 
- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.

Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network. 

-  Opportunity  Cost:  Staking  requires  validators  and  delegators  to  lock  up  their  BNB  tokens,
providing an economic incentive to act honestly to avoid losing their staked assets. 

Fees on the Binance Smart Chain 

1. Transaction Fees: 
- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.

These  fees  are  paid  in  BNB  and  are  essential  for  maintaining  network  operations  and
compensating validators. 

-  Dynamic  Fee  Structure:  Transaction  fees  can  vary  based  on  network  congestion  and  the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet. 

2. Block Rewards: 
Incentivizing  Validators:  Validators  earn  block  rewards  in  addition  to  transaction  fees.  These

rewards are distributed to validators for their role in maintaining the network and processing
transactions. 

3. Cross-Chain Fees: 
Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred

between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience. 

4. Smart Contract Fees: 
Deploying  and  interacting  with  smart  contracts  on  BSC  involves  paying  fees  based  on  the

computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The  crypto-asset's  PoS  system secures  transactions  through  validator  incentives  and  economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees. 

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity. 

This  system aims to increase security  by aligning incentives while  making the crypto-asset's  fee
structure more predictable and deflationary during high network activity.

The Gnosis Chain’s incentive and fee models encourage both validator participation and network
accessibility,  using  a  dual-token  system to  maintain  low  transaction  costs  and  effective  staking
rewards. 

Incentive Mechanisms: 

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for
their participation in consensus and securing the network. 

-  Delegation Model:  GNO holders who do not operate validator nodes can delegate their  GNO
tokens  to  validators,  allowing  them  to  share  in  staking  rewards  and  encouraging  broader
participation in network security. 

- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-
term network security incentives with token holders’ economic interests. 
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- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The
use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and
developers. 

Applicable Fees: 

Transaction Fees in xDai  Users pay transaction fees in xDai,  the stable fee token,  making costs
affordable and predictable. This model is especially suited for high-frequency applications and
dApps  where  low  transaction  fees  are  essential.  xDai  transaction  fees  are  redistributed  to
validators as part of their compensation, aligning their rewards with network activity. Delegated
Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by
delegating  their  tokens  to  active  validators,  promoting  user  participation  in  network  security
without requiring direct involvement in consensus operations.

The  Huobi  Eco  Chain  (HECO)  blockchain  employs  a  Hybrid-Proof-of-Stake  (HPoS)  consensus
mechanism,  combining  elements  of  Proof-of-Stake  (PoS)  to  enhance  transaction  efficiency  and
scalability. 

Incentive Mechanism: 

1. Validator Rewards: 
Validators are selected based on their stake in the network. They process transactions and add

blocks to the blockchain. Validators receive rewards in the form of transaction fees for their role
in maintaining the blockchain's integrity. 

2. Staking Participation: 
Users  can  stake  Huobi  Token (HT)  to  become validators  or  delegate  their  tokens  to  existing

validators. Staking helps secure the network and, in return, participants receive a portion of the
transaction fees as rewards. 

Applicable Fees: 

1. Transaction Fees (Gas Fees): 
Users pay gas fees in HT tokens to execute transactions and interact with smart contracts on the

HECO network. These fees compensate validators for processing and validating transactions. 
2. Smart Contract Execution Fees: 

Deploying and interacting with smart contracts incur additional fees, which are also paid in HT
tokens. These fees cover the computational resources required to execute contract code.

NEAR  Protocol  employs  several  economic  mechanisms  to  secure  the  network  and  incentivize
participation.

Incentive Mechanisms to Secure Transactions: 

1. Staking Rewards: 
Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5%

annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators
propose blocks,  validate transactions,  and receive a share of these rewards based on their
staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad
participation. 

2. Delegation: 
Token holders can delegate their NEAR tokens to validators to increase the validator's stake and

improve  the  chances  of  being  selected  to  validate  transactions.  Delegators  share  in  the
validator's  rewards based on their  delegated tokens,  incentivizing  users  to  support  reliable
validators. 
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3. Slashing and Economic Penalties: 
Validators  face penalties  for  malicious behavior,  such as  failing  to  validate correctly  or  acting

dishonestly. The slashing mechanism enforces security by deducting a portion of their staked
tokens, ensuring validators follow the network's best interests. 

4. Epoch Rotation and Validator Selection: 
Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each

epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain: 

1. Transaction Fees: 
Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total

circulating supply, introducing a potential deflationary effect over time. Validators also receive a
portion of transaction fees as additional rewards, providing an ongoing incentive for network
maintenance. 

2. Storage Fees: 
NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by

accounts,  contracts,  and  data.  This  requires  users  to  hold  NEAR  tokens  as  a  deposit
proportional to their storage usage, ensuring the efficient use of network resources. 

3. Redistribution and Burning: 
A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest

is  distributed  to  validators  as  compensation  for  their  work.  The  burning  mechanism helps
maintain long-term economic sustainability and potential value appreciation for NEAR holders. 

4. Reserve Requirement: 
Users must maintain a minimum account balance and reserves for data storage, encouraging

efficient use of resources and preventing spam attacks.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network
security, incentivize participation, and maintain transaction integrity. 

Incentive Mechanisms: 

1. Validators: 
- Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are

selected to validate transactions and produce new blocks based on the number of tokens they
have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction
fees for their services. 

-  Block  Production:  Validators  are  responsible  for  proposing  and  voting  on  new  blocks.  The
selected validator proposes a block, and other validators verify and validate it. Validators are
incentivized to act honestly and efficiently to earn rewards and avoid penalties. 

- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring
the security and finality of transactions processed on Polygon. This provides an additional layer
of security by leveraging Ethereum's robustness. 

2. Delegators: 
- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC

tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators,
incentivizing them to choose reliable and performant validators. 

-  Shared  Rewards:  Rewards  earned  by  validators  are  shared  with  delegators,  based  on  the
proportion  of  tokens  delegated.  This  system  encourages  widespread  participation  and
enhances the network's decentralization. 

3. Economic Security: 
-  Slashing:  Validators  can  be  penalized  through  a  process  called  slashing  if  they  engage  in

malicious behavior  or  fail  to  perform their  duties  correctly.  This  includes double-signing or
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going offline for extended periods. Slashing results in the loss of a portion of the staked tokens,
acting as a strong deterrent against dishonest actions. 

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to
participate  in  the  consensus  process,  ensuring  they  have  a  vested  interest  in  maintaining
network security and integrity. Fees on the Polygon Blockchain 

4. Transaction Fees: 
-  Low  Fees:  One  of  Polygon's  main  advantages  is  its  low  transaction  fees  compared  to  the

Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to
encourage high transaction throughput and user adoption. 

-  Dynamic Fees:  Fees on Polygon can vary depending on network congestion and transaction
complexity. However, they remain significantly lower than those on Ethereum, making Polygon
an attractive option for users and developers. 

5. Smart Contract Fees: 
Deployment and Execution Costs:  Deploying and interacting with smart  contracts  on Polygon

incurs fees based on the computational resources required. These fees are also paid in MATIC
tokens and are much lower than on Ethereum, making it cost-effective for developers to build
and maintain decentralized applications (dApps) on Polygon. 

6. Plasma Framework: 
State  Transfers  and  Withdrawals:  The  Plasma  framework  allows  for  off-chain  processing  of

transactions, which are periodically batched and committed to the Ethereum main chain. Fees
associated with  these processes  are  also  paid  in  MATIC  tokens,  and they  help  reduce the
overall cost of using the network.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.

Incentive Mechanisms:

1. Validators: 
- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.

They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks. 

-  Transaction  Fees:  Validators  earn  a  portion  of  the  transaction  fees  paid  by  users  for  the
transactions  they  include  in  the  blocks.  This  provides  an  additional  financial  incentive  for
validators to process transactions efficiently and maintain the network's integrity. 

2. Delegators: 
- Delegated Staking: Token holders who do not wish to run a validator node can delegate their

SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This  encourages  widespread  participation  in  securing  the  network  and  ensures
decentralization. 

3. Economic Security: 
- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or

being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network. 

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain 
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Transaction Fees: 

1. Low and Predictable Fees: 
Solana is designed to handle a high throughput of transactions, which helps keep fees low and

predictable.  The average transaction fee on Solana is  significantly lower compared to other
blockchains like Ethereum. 

2. Fee Structure: 
Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth. 
3. Rent Fees: 

State  Storage:  Solana  charges  rent  fees  for  storing  data  on  the  blockchain.  These  fees  are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network. 

4. Smart Contract Fees: 
Execution  Costs:  Similar  to  transaction  fees,  fees  for  deploying  and  interacting  with  smart

contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
avalanche, binance_smart_chain, ethereum, gnosis_chain, huobi, near_protocol, polygon, solana is
calculated first. For the energy consumption of the token, a fraction of the energy consumption of
the network is attributed to the token, which is determined based on the activity of the crypto-asset
within  the network.  When calculating  the energy  consumption,  the Functionally  Fungible  Group
Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset
in  scope.  The  mappings  are  updated  regularly,  based  on  data  of  the  Digital  Token  Identifier
Foundation. The information regarding the hardware used and the number of participants in the
network is based on assumptions that are verified with best effort using empirical data. In general,
participants are assumed to be largely economically rational. As a precautionary principle, we make
assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse
impacts.

Uniswap

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Uniswap /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 2135.79057 kWh/
a
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Qualitative information 

S.4 Consensus Mechanism 

Uniswap is present on the following networks: Arbitrum, Binance Smart Chain, Ethereum, Polygon.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability
and reduce transaction costs. It  assumes that transactions are valid by default and only verifies
them if there's a challenge (optimistic).

Core Components: 

- Sequencer: Orders transactions and creates batches for processing. 
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum. 
- Fraud Proofs: Protect against invalid transactions through an interactive verification process. 

Verification Process: 

1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and
batches them. 

2. State Commitment: These batches are submitted to Ethereum with a state commitment. 
3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud. 
4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to

identify the fraudulent transaction. The final operation is executed on Ethereum to determine the
correct state. 

5.  Rollback and Penalties:  If  fraud is proven, the state is rolled back, and the dishonest party is
penalized. 

Security  and Efficiency:  The combination of  the Sequencer,  bridge,  and interactive fraud proofs
ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging
off-chain computations, Arbitrum can provide high throughput and low fees.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security. 

Core Components:

1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network’s security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin).  Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security. 

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security. 

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process 
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4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators.  The  more  BNB staked  and  votes  received,  the  higher  the  chance  of  being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes. 

5.  Block  Production:  The selected validators  take  turns  producing  blocks  in  a  PoA-like  manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network. 

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives 

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if  validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB. 

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and  delegators  share  transaction  fees  as  rewards,  which  provides  continuous  economic
incentives to maintain network security and performance. 

9.  Transaction Fees:  BSC employs low transaction fees,  paid in BNB, making it  cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity. 

The  network  operates  on  a  slot  and  epoch  system,  where  a  new block  is  proposed  every  12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a
hybrid consensus mechanism. Here’s a detailed explanation of how Polygon achieves consensus: 

Core Concepts:

1. Proof of Stake (PoS): 
- Validator Selection: Validators on the Polygon network are selected based on the number of

MATIC  tokens  they  have  staked.  The  more  tokens  staked,  the  higher  the  chance  of  being
selected to validate transactions and produce new blocks. 

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to validators. Delegators share in the rewards earned by validators. 

2. Plasma Chains: 
- Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the

main Ethereum chain. These child chains can process transactions off-chain and submit only
the final state to the Ethereum main chain, significantly increasing throughput and reducing
congestion. 

-  Fraud  Proofs:  Plasma  uses  a  fraud-proof  mechanism  to  ensure  the  security  of  off-chain
transactions. If a fraudulent transaction is detected, it can be challenged and reverted. 
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Consensus Process:

1. Transaction Validation: 
Transactions are first validated by validators who have staked MATIC tokens.  These validators

confirm the validity of transactions and include them in blocks. 
2. Block Production: 

-  Proposing  and  Voting:  Validators  propose  new  blocks  based  on  their  staked  tokens  and
participate  in  a  voting  process  to  reach  consensus  on  the  next  block.  The  block  with  the
majority of votes is added to the blockchain. 

- Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain
are submitted to the Ethereum main chain. This process ensures the security and finality of
transactions on the Polygon network. 

3. Plasma Framework: 
-  Child  Chains:  Transactions  can  be  processed  on  child  chains  created  using  the  Plasma

framework. These transactions are validated off-chain and only the final state is submitted to
the Ethereum main chain. 

- Fraud Proofs: If  a fraudulent transaction occurs, it can be challenged within a certain period
using fraud proofs. This mechanism ensures the integrity of off-chain transactions. 

Security and Economic Incentives: 

1. Incentives for Validators: 
-  Staking Rewards:  Validators  earn rewards for  staking MATIC tokens and participating in  the

consensus process. These rewards are distributed in MATIC tokens and are proportional to the
amount staked and the performance of the validator. 

-  Transaction Fees:  Validators also earn a portion of  the transaction fees paid by users.  This
provides an additional financial incentive to maintain the network’s integrity and efficiency. 

2. Delegation: 
Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate

to. This encourages more token holders to participate in securing the network by choosing
reliable validators. 

3. Economic Security: 
Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This

penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that
validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees 

Uniswap is present on the following networks: Arbitrum, Binance Smart Chain, Ethereum, Polygon.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to
ensure the security and integrity of transactions on its network. The key mechanisms include: 

1. Validators and Sequencers: 
- Sequencers are responsible for ordering transactions and creating batches that are processed

off-chain. They play a critical role in maintaining the efficiency and throughput of the network. 
-  Validators  monitor  the  sequencers'  actions  and  ensure  that  transactions  are  processed

correctly.  Validators  verify  the state  transitions  and ensure that  no invalid  transactions  are
included in the batches. 

2. Fraud Proofs: 
- Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for

quick transaction finality and high throughput.
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- Challenge Period: There is a predefined period during which anyone can challenge the validity of
a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious
behavior. 

-  Dispute Resolution:  If  a  challenge is  raised,  an interactive  verification process is  initiated to
pinpoint  the  exact  step  where  fraud  occurred.  If  the  challenge  is  valid,  the  fraudulent
transaction is reverted, and the dishonest actor is penalized. 

3. Economic Incentives: 
- Rewards for Honest Behavior: Participants in the network, such as validators and sequencers,

are incentivized through rewards for performing their  duties honestly  and efficiently.  These
rewards come from transaction fees and potentially other protocol incentives. 

-  Penalties  for  Malicious  Behavior:  Participants  who  engage  in  dishonest  behavior  or  submit
invalid transactions are penalized. This can include slashing of staked tokens or other forms of
economic penalties, which serve to discourage malicious actions. 

Fees on the Arbitrum One Blockchain 

1. Transaction Fees: 
- Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are

typically  lower than Ethereum mainnet fees due to the reduced computational  load on the
main chain. 

- Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer.
This fee covers the cost of processing the transaction and ensuring its inclusion in a batch. 

2. L1 Data Fees: 
- Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are

posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee,
which accounts for the gas required to publish these state updates on Ethereum. 

-  Cost Sharing:  Because transactions are batched, the fixed costs of posting state updates to
Ethereum are spread across multiple transactions, making it more cost-effective for users.

Binance Smart Chain (BSC) uses the Proof of  Staked Authority (PoSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators. 

Incentive Mechanisms 

1. Validators: 
-  Staking  Rewards:  Validators  must  stake  a  significant  amount  of  BNB  to  participate  in  the

consensus process. They earn rewards in the form of transaction fees and block rewards. 
- Selection Process: Validators are selected based on the amount of BNB staked and the votes

received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks. 

2. Delegators: 
- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases

the validator's total stake and improves their chances of being selected to produce blocks. 
-  Shared  Rewards:  Delegators  earn  a  portion  of  the  rewards  that  validators  receive.  This

incentivizes  token  holders  to  participate  in  the  network’s  security  and  decentralization  by
choosing reliable validators. 

3. Candidates: 
Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB

and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience. 
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4. Economic Security: 
- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.

Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network. 

-  Opportunity  Cost:  Staking  requires  validators  and  delegators  to  lock  up  their  BNB  tokens,
providing an economic incentive to act honestly to avoid losing their staked assets. 

Fees on the Binance Smart Chain 

1. Transaction Fees: 
- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.

These  fees  are  paid  in  BNB  and  are  essential  for  maintaining  network  operations  and
compensating validators. 

-  Dynamic  Fee  Structure:  Transaction  fees  can  vary  based  on  network  congestion  and  the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet. 

2. Block Rewards: 
Incentivizing  Validators:  Validators  earn  block  rewards  in  addition  to  transaction  fees.  These

rewards are distributed to validators for their role in maintaining the network and processing
transactions. 

3. Cross-Chain Fees: 
Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred

between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience. 

4. Smart Contract Fees: 
Deploying  and  interacting  with  smart  contracts  on  BSC  involves  paying  fees  based  on  the

computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The  crypto-asset's  PoS  system secures  transactions  through  validator  incentives  and  economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees. 

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity. 

This  system aims to increase security  by aligning incentives while  making the crypto-asset's  fee
structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network
security, incentivize participation, and maintain transaction integrity. 

Incentive Mechanisms: 

1. Validators: 
- Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are

selected to validate transactions and produce new blocks based on the number of tokens they
have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction
fees for their services. 

-  Block  Production:  Validators  are  responsible  for  proposing  and  voting  on  new  blocks.  The
selected validator proposes a block, and other validators verify and validate it. Validators are
incentivized to act honestly and efficiently to earn rewards and avoid penalties. 
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- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring
the security and finality of transactions processed on Polygon. This provides an additional layer
of security by leveraging Ethereum's robustness. 

2. Delegators: 
- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC

tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators,
incentivizing them to choose reliable and performant validators. 

-  Shared  Rewards:  Rewards  earned  by  validators  are  shared  with  delegators,  based  on  the
proportion  of  tokens  delegated.  This  system  encourages  widespread  participation  and
enhances the network's decentralization. 

3. Economic Security: 
-  Slashing:  Validators  can  be  penalized  through  a  process  called  slashing  if  they  engage  in

malicious behavior  or  fail  to  perform their  duties  correctly.  This  includes double-signing or
going offline for extended periods. Slashing results in the loss of a portion of the staked tokens,
acting as a strong deterrent against dishonest actions. 

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to
participate  in  the  consensus  process,  ensuring  they  have  a  vested  interest  in  maintaining
network security and integrity. Fees on the Polygon Blockchain 

4. Transaction Fees: 
-  Low  Fees:  One  of  Polygon's  main  advantages  is  its  low  transaction  fees  compared  to  the

Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to
encourage high transaction throughput and user adoption. 

-  Dynamic Fees:  Fees on Polygon can vary depending on network congestion and transaction
complexity. However, they remain significantly lower than those on Ethereum, making Polygon
an attractive option for users and developers. 

5. Smart Contract Fees: 
Deployment and Execution Costs:  Deploying and interacting with smart  contracts  on Polygon

incurs fees based on the computational resources required. These fees are also paid in MATIC
tokens and are much lower than on Ethereum, making it cost-effective for developers to build
and maintain decentralized applications (dApps) on Polygon. 

6. Plasma Framework: 
State  Transfers  and  Withdrawals:  The  Plasma  framework  allows  for  off-chain  processing  of

transactions, which are periodically batched and committed to the Ethereum main chain. Fees
associated with  these processes  are  also  paid  in  MATIC  tokens,  and they  help  reduce the
overall cost of using the network.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
arbitrum, binance_smart_chain, ethereum, polygon is calculated first. For the energy consumption of
the token, a fraction of the energy consumption of the network is attributed to the token, which is
determined based on the  activity  of  the  crypto-asset  within  the  network.  When calculating  the
energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if
available  -  to  determine all  implementations  of  the asset  in  scope.  The mappings  are  updated
regularly, based on data of the Digital Token Identifier Foundation. The information regarding the
hardware used and the number of participants in the network is based on assumptions that are
verified with best effort using empirical  data.  In general,  participants are assumed to be largely
economically rational. As a precautionary principle, we make assumptions on the conservative side
when in doubt, i.e. making higher estimates for the adverse impacts.
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SHIBA INU

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset SHIBA INU /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 2026.01335 kWh/
a

Qualitative information 

S.4 Consensus Mechanism 

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity. 

The  network  operates  on  a  slot  and  epoch  system,  where  a  new block  is  proposed  every  12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees 

The  crypto-asset's  PoS  system secures  transactions  through  validator  incentives  and  economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees. 

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity. 

This  system aims to increase security  by aligning incentives while  making the crypto-asset's  fee
structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:
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To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
ethereum is calculated first.  For the energy consumption of  the token,  a fraction of  the energy
consumption of the network is attributed to the token, which is determined based on the activity of
the crypto-asset within the network.  When calculating the energy consumption,  the Functionally
Fungible  Group  Digital  Token  Identifier  (FFG  DTI)  is  used  -  if  available  -  to  determine  all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of  participants  in  the network is  based on assumptions that  are  verified with  best  effort  using
empirical  data.  In  general,  participants  are  assumed  to  be  largely  economically  rational.  As  a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

ENA

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset ENA /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 2018.61734 kWh/
a

Qualitative information 

S.4 Consensus Mechanism 

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity. 

The  network  operates  on  a  slot  and  epoch  system,  where  a  new block  is  proposed  every  12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees 

The  crypto-asset's  PoS  system secures  transactions  through  validator  incentives  and  economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
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ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees. 

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity. 

This  system aims to increase security  by aligning incentives while  making the crypto-asset's  fee
structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
ethereum is calculated first.  For the energy consumption of  the token,  a fraction of  the energy
consumption of the network is attributed to the token, which is determined based on the activity of
the crypto-asset within the network.  When calculating the energy consumption,  the Functionally
Fungible  Group  Digital  Token  Identifier  (FFG  DTI)  is  used  -  if  available  -  to  determine  all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of  participants  in  the network is  based on assumptions that  are  verified with  best  effort  using
empirical  data.  In  general,  participants  are  assumed  to  be  largely  economically  rational.  As  a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

Pepe

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Pepe /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 1665.08812 kWh/
a

Qualitative information 

S.4 Consensus Mechanism 

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity. 
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The  network  operates  on  a  slot  and  epoch  system,  where  a  new block  is  proposed  every  12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees 

The  crypto-asset's  PoS  system secures  transactions  through  validator  incentives  and  economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees. 

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity. 

This  system aims to increase security  by aligning incentives while  making the crypto-asset's  fee
structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
ethereum is calculated first.  For the energy consumption of  the token,  a fraction of  the energy
consumption of the network is attributed to the token, which is determined based on the activity of
the crypto-asset within the network.  When calculating the energy consumption,  the Functionally
Fungible  Group  Digital  Token  Identifier  (FFG  DTI)  is  used  -  if  available  -  to  determine  all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of  participants  in  the network is  based on assumptions that  are  verified with  best  effort  using
empirical  data.  In  general,  participants  are  assumed  to  be  largely  economically  rational.  As  a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

Ondo

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Ondo /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /
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Field Value Unit

S.8 Energy consumption 1526.04315 kWh/
a

Qualitative information 

S.4 Consensus Mechanism 

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity. 

The  network  operates  on  a  slot  and  epoch  system,  where  a  new block  is  proposed  every  12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees 

The  crypto-asset's  PoS  system secures  transactions  through  validator  incentives  and  economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees. 

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity. 

This  system aims to increase security  by aligning incentives while  making the crypto-asset's  fee
structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
ethereum is calculated first.  For the energy consumption of  the token,  a fraction of  the energy
consumption of the network is attributed to the token, which is determined based on the activity of
the crypto-asset within the network.  When calculating the energy consumption,  the Functionally
Fungible  Group  Digital  Token  Identifier  (FFG  DTI)  is  used  -  if  available  -  to  determine  all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of  participants  in  the network is  based on assumptions that  are  verified with  best  effort  using
empirical  data.  In  general,  participants  are  assumed  to  be  largely  economically  rational.  As  a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.
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Arbitrum

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Arbitrum /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 864.79101 kWh/
a

Qualitative information 

S.4 Consensus Mechanism 

Arbitrum is present on the following networks: Arbitrum, Ethereum.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability
and reduce transaction costs. It  assumes that transactions are valid by default and only verifies
them if there's a challenge (optimistic).

Core Components: 

- Sequencer: Orders transactions and creates batches for processing. 
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum. 
- Fraud Proofs: Protect against invalid transactions through an interactive verification process. 

Verification Process: 

1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and
batches them. 

2. State Commitment: These batches are submitted to Ethereum with a state commitment. 
3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud. 
4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to

identify the fraudulent transaction. The final operation is executed on Ethereum to determine the
correct state. 

5.  Rollback and Penalties:  If  fraud is proven, the state is rolled back, and the dishonest party is
penalized. 

Security  and Efficiency:  The combination of  the Sequencer,  bridge,  and interactive fraud proofs
ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging
off-chain computations, Arbitrum can provide high throughput and low fees.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
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is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity. 

The  network  operates  on  a  slot  and  epoch  system,  where  a  new block  is  proposed  every  12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees 

Arbitrum is present on the following networks: Arbitrum, Ethereum.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to
ensure the security and integrity of transactions on its network. The key mechanisms include: 

1. Validators and Sequencers: 
- Sequencers are responsible for ordering transactions and creating batches that are processed

off-chain. They play a critical role in maintaining the efficiency and throughput of the network. 
-  Validators  monitor  the  sequencers'  actions  and  ensure  that  transactions  are  processed

correctly.  Validators  verify  the state  transitions  and ensure that  no invalid  transactions  are
included in the batches. 

2. Fraud Proofs: 
- Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for

quick transaction finality and high throughput.
- Challenge Period: There is a predefined period during which anyone can challenge the validity of

a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious
behavior. 

-  Dispute Resolution:  If  a  challenge is  raised,  an interactive  verification process is  initiated to
pinpoint  the  exact  step  where  fraud  occurred.  If  the  challenge  is  valid,  the  fraudulent
transaction is reverted, and the dishonest actor is penalized. 

3. Economic Incentives: 
- Rewards for Honest Behavior: Participants in the network, such as validators and sequencers,

are incentivized through rewards for performing their  duties honestly  and efficiently.  These
rewards come from transaction fees and potentially other protocol incentives. 

-  Penalties  for  Malicious  Behavior:  Participants  who  engage  in  dishonest  behavior  or  submit
invalid transactions are penalized. This can include slashing of staked tokens or other forms of
economic penalties, which serve to discourage malicious actions. 

Fees on the Arbitrum One Blockchain 

1. Transaction Fees: 
- Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are

typically  lower than Ethereum mainnet fees due to the reduced computational  load on the
main chain. 

- Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer.
This fee covers the cost of processing the transaction and ensuring its inclusion in a batch. 

2. L1 Data Fees: 
- Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are

posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee,
which accounts for the gas required to publish these state updates on Ethereum. 
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-  Cost Sharing:  Because transactions are batched, the fixed costs of posting state updates to
Ethereum are spread across multiple transactions, making it more cost-effective for users.

The  crypto-asset's  PoS  system secures  transactions  through  validator  incentives  and  economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees. 

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity. 

This  system aims to increase security  by aligning incentives while  making the crypto-asset's  fee
structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
arbitrum, ethereum is calculated first. For the energy consumption of the token, a fraction of the
energy consumption of the network is attributed to the token, which is determined based on the
activity  of  the  crypto-asset  within  the  network.  When  calculating  the  energy  consumption,  the
Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of  participants  in  the network is  based on assumptions that  are  verified with  best  effort  using
empirical  data.  In  general,  participants  are  assumed  to  be  largely  economically  rational.  As  a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

Graph Token

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Graph Token /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 398.61327 kWh/
a
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Qualitative information 

S.4 Consensus Mechanism 

Graph Token is present on the following networks: Arbitrum, Ethereum.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability
and reduce transaction costs. It  assumes that transactions are valid by default and only verifies
them if there's a challenge (optimistic).

Core Components: 

- Sequencer: Orders transactions and creates batches for processing. 
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum. 
- Fraud Proofs: Protect against invalid transactions through an interactive verification process. 

Verification Process: 

1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and
batches them. 

2. State Commitment: These batches are submitted to Ethereum with a state commitment. 
3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud. 
4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to

identify the fraudulent transaction. The final operation is executed on Ethereum to determine the
correct state. 

5.  Rollback and Penalties:  If  fraud is proven, the state is rolled back, and the dishonest party is
penalized. 

Security  and Efficiency:  The combination of  the Sequencer,  bridge,  and interactive fraud proofs
ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging
off-chain computations, Arbitrum can provide high throughput and low fees.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity. 

The  network  operates  on  a  slot  and  epoch  system,  where  a  new block  is  proposed  every  12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees 

Graph Token is present on the following networks: Arbitrum, Ethereum.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to
ensure the security and integrity of transactions on its network. The key mechanisms include: 

1. Validators and Sequencers: 
- Sequencers are responsible for ordering transactions and creating batches that are processed

off-chain. They play a critical role in maintaining the efficiency and throughput of the network. 
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-  Validators  monitor  the  sequencers'  actions  and  ensure  that  transactions  are  processed
correctly.  Validators  verify  the state  transitions  and ensure that  no invalid  transactions  are
included in the batches. 

2. Fraud Proofs: 
- Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for

quick transaction finality and high throughput.
- Challenge Period: There is a predefined period during which anyone can challenge the validity of

a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious
behavior. 

-  Dispute Resolution:  If  a  challenge is  raised,  an interactive  verification process is  initiated to
pinpoint  the  exact  step  where  fraud  occurred.  If  the  challenge  is  valid,  the  fraudulent
transaction is reverted, and the dishonest actor is penalized. 

3. Economic Incentives: 
- Rewards for Honest Behavior: Participants in the network, such as validators and sequencers,

are incentivized through rewards for performing their  duties honestly  and efficiently.  These
rewards come from transaction fees and potentially other protocol incentives. 

-  Penalties  for  Malicious  Behavior:  Participants  who  engage  in  dishonest  behavior  or  submit
invalid transactions are penalized. This can include slashing of staked tokens or other forms of
economic penalties, which serve to discourage malicious actions. 

Fees on the Arbitrum One Blockchain 

1. Transaction Fees: 
- Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are

typically  lower than Ethereum mainnet fees due to the reduced computational  load on the
main chain. 

- Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer.
This fee covers the cost of processing the transaction and ensuring its inclusion in a batch. 

2. L1 Data Fees: 
- Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are

posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee,
which accounts for the gas required to publish these state updates on Ethereum. 

-  Cost Sharing:  Because transactions are batched, the fixed costs of posting state updates to
Ethereum are spread across multiple transactions, making it more cost-effective for users.

The  crypto-asset's  PoS  system secures  transactions  through  validator  incentives  and  economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees. 

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity. 

This  system aims to increase security  by aligning incentives while  making the crypto-asset's  fee
structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
arbitrum, ethereum is calculated first. For the energy consumption of the token, a fraction of the

Sustainability indicators according to MiCAR 66 (5) 117



energy consumption of the network is attributed to the token, which is determined based on the
activity  of  the  crypto-asset  within  the  network.  When  calculating  the  energy  consumption,  the
Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of  participants  in  the network is  based on assumptions that  are  verified with  best  effort  using
empirical  data.  In  general,  participants  are  assumed  to  be  largely  economically  rational.  As  a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

OFFICIAL TRUMP

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset OFFICIAL TRUMP /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 334.04963 kWh/
a

Qualitative information 

S.4 Consensus Mechanism 

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH): 
-  Time-Stamped Transactions:  PoH is a cryptographic technique that timestamps transactions,

creating a historical record that proves that an event has occurred at a specific moment in time.
- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash

that includes the transaction and the time it was processed. This sequence of hashes provides
a  verifiable  order  of  events,  enabling  the  network  to  efficiently  agree  on  the  sequence  of
transactions. 

2. Proof of Stake (PoS): 
- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL

tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks. 

-  Delegation:  Token  holders  can  delegate  their  SOL  tokens  to  validators,  earning  rewards
proportional to their stake while enhancing the network's security. 
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Consensus Process: 

1. Transaction Validation: 
Transactions  are  broadcast  to  the  network  and  collected  by  validators.  Each  transaction  is

validated  to  ensure  it  meets  the  network’s  criteria,  such  as  having  correct  signatures  and
sufficient funds. 

2. PoH Sequence Generation: 
A validator generates a sequence of hashes using PoH, each containing a timestamp and the

previous  hash.  This  process  creates  a  historical  record  of  transactions,  establishing  a
cryptographic clock for the network. 

3. Block Production: 
The network uses PoS to select a leader validator based on their stake. The leader is responsible

for  bundling  the  validated  transactions  into  a  block.  The  leader  validator  uses  the  PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order. 

4. Consensus and Finalization: 
Other validators verify the block produced by the leader validator. They check the correctness of

the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized. 

Security and Economic Incentives: 

1. Incentives for Validators: 
- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are

distributed in SOL tokens and are proportional to the validator’s stake and performance. 
- Transaction Fees: Validators also earn transaction fees from the transactions included in the

blocks  they  produce.  These  fees  provide  an  additional  incentive  for  validators  to  process
transactions efficiently. 

2. Security: 
- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking

acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens. 

-  Delegated  Staking:  Token  holders  can  delegate  their  SOL  tokens  to  validators,  enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators. 

3. Economic Penalties: 
Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing

invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees 

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.

Incentive Mechanisms:

1. Validators: 
- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.

They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks. 
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-  Transaction  Fees:  Validators  earn  a  portion  of  the  transaction  fees  paid  by  users  for  the
transactions  they  include  in  the  blocks.  This  provides  an  additional  financial  incentive  for
validators to process transactions efficiently and maintain the network's integrity. 

2. Delegators: 
- Delegated Staking: Token holders who do not wish to run a validator node can delegate their

SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This  encourages  widespread  participation  in  securing  the  network  and  ensures
decentralization. 

3. Economic Security: 
- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or

being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network. 

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain 

Transaction Fees: 

1. Low and Predictable Fees: 
Solana is designed to handle a high throughput of transactions, which helps keep fees low and

predictable.  The average transaction fee on Solana is  significantly lower compared to other
blockchains like Ethereum. 

2. Fee Structure: 
Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth. 
3. Rent Fees: 

State  Storage:  Solana  charges  rent  fees  for  storing  data  on  the  blockchain.  These  fees  are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network. 

4. Smart Contract Fees: 
Execution  Costs:  Similar  to  transaction  fees,  fees  for  deploying  and  interacting  with  smart

contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana
is calculated first. For the energy consumption of the token, a fraction of the energy consumption of
the network is attributed to the token, which is determined based on the activity of the crypto-asset
within  the network.  When calculating  the energy  consumption,  the Functionally  Fungible  Group
Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset
in  scope.  The  mappings  are  updated  regularly,  based  on  data  of  the  Digital  Token  Identifier
Foundation. The information regarding the hardware used and the number of participants in the
network is based on assumptions that are verified with best effort using empirical data. In general,
participants are assumed to be largely economically rational. As a precautionary principle, we make
assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse
impacts.
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Render Token

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Render Token /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 322.21656 kWh/
a

Qualitative information 

S.4 Consensus Mechanism 

Render Token is present on the following networks: Ethereum, Solana.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity. 

The  network  operates  on  a  slot  and  epoch  system,  where  a  new block  is  proposed  every  12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH): 
-  Time-Stamped Transactions:  PoH is a cryptographic technique that timestamps transactions,

creating a historical record that proves that an event has occurred at a specific moment in time.
- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash

that includes the transaction and the time it was processed. This sequence of hashes provides
a  verifiable  order  of  events,  enabling  the  network  to  efficiently  agree  on  the  sequence  of
transactions. 

2. Proof of Stake (PoS): 
- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL

tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks. 
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-  Delegation:  Token  holders  can  delegate  their  SOL  tokens  to  validators,  earning  rewards
proportional to their stake while enhancing the network's security. 

Consensus Process: 

1. Transaction Validation: 
Transactions  are  broadcast  to  the  network  and  collected  by  validators.  Each  transaction  is

validated  to  ensure  it  meets  the  network’s  criteria,  such  as  having  correct  signatures  and
sufficient funds. 

2. PoH Sequence Generation: 
A validator generates a sequence of hashes using PoH, each containing a timestamp and the

previous  hash.  This  process  creates  a  historical  record  of  transactions,  establishing  a
cryptographic clock for the network. 

3. Block Production: 
The network uses PoS to select a leader validator based on their stake. The leader is responsible

for  bundling  the  validated  transactions  into  a  block.  The  leader  validator  uses  the  PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order. 

4. Consensus and Finalization: 
Other validators verify the block produced by the leader validator. They check the correctness of

the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized. 

Security and Economic Incentives: 

1. Incentives for Validators: 
- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are

distributed in SOL tokens and are proportional to the validator’s stake and performance. 
- Transaction Fees: Validators also earn transaction fees from the transactions included in the

blocks  they  produce.  These  fees  provide  an  additional  incentive  for  validators  to  process
transactions efficiently. 

2. Security: 
- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking

acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens. 

-  Delegated  Staking:  Token  holders  can  delegate  their  SOL  tokens  to  validators,  enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators. 

3. Economic Penalties: 
Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing

invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees 

Render Token is present on the following networks: Ethereum, Solana.

The  crypto-asset's  PoS  system secures  transactions  through  validator  incentives  and  economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees. 
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Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity. 

This  system aims to increase security  by aligning incentives while  making the crypto-asset's  fee
structure more predictable and deflationary during high network activity.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.

Incentive Mechanisms:

1. Validators: 
- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.

They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks. 

-  Transaction  Fees:  Validators  earn  a  portion  of  the  transaction  fees  paid  by  users  for  the
transactions  they  include  in  the  blocks.  This  provides  an  additional  financial  incentive  for
validators to process transactions efficiently and maintain the network's integrity. 

2. Delegators: 
- Delegated Staking: Token holders who do not wish to run a validator node can delegate their

SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This  encourages  widespread  participation  in  securing  the  network  and  ensures
decentralization. 

3. Economic Security: 
- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or

being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network. 

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain 

Transaction Fees: 

1. Low and Predictable Fees: 
Solana is designed to handle a high throughput of transactions, which helps keep fees low and

predictable.  The average transaction fee on Solana is  significantly lower compared to other
blockchains like Ethereum. 

2. Fee Structure: 
Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth. 
3. Rent Fees: 

State  Storage:  Solana  charges  rent  fees  for  storing  data  on  the  blockchain.  These  fees  are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network. 

4. Smart Contract Fees: 
Execution  Costs:  Similar  to  transaction  fees,  fees  for  deploying  and  interacting  with  smart

contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.
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S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
ethereum, solana is calculated first.  For the energy consumption of the token, a fraction of the
energy consumption of the network is attributed to the token, which is determined based on the
activity  of  the  crypto-asset  within  the  network.  When  calculating  the  energy  consumption,  the
Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of  participants  in  the network is  based on assumptions that  are  verified with  best  effort  using
empirical  data.  In  general,  participants  are  assumed  to  be  largely  economically  rational.  As  a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

FLOKI

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset FLOKI /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 303.68766 kWh/
a

Qualitative information 

S.4 Consensus Mechanism 

FLOKI is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security. 

Core Components:

1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network’s security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin).  Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security. 
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2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security. 

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process 

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators.  The  more  BNB staked  and  votes  received,  the  higher  the  chance  of  being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes. 

5.  Block  Production:  The selected validators  take  turns  producing  blocks  in  a  PoA-like  manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network. 

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives 

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if  validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB. 

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and  delegators  share  transaction  fees  as  rewards,  which  provides  continuous  economic
incentives to maintain network security and performance. 

9.  Transaction Fees:  BSC employs low transaction fees,  paid in BNB, making it  cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity. 

The  network  operates  on  a  slot  and  epoch  system,  where  a  new block  is  proposed  every  12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees 

FLOKI is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses the Proof of  Staked Authority (PoSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators. 
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Incentive Mechanisms 

1. Validators: 
-  Staking  Rewards:  Validators  must  stake  a  significant  amount  of  BNB  to  participate  in  the

consensus process. They earn rewards in the form of transaction fees and block rewards. 
- Selection Process: Validators are selected based on the amount of BNB staked and the votes

received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks. 

2. Delegators: 
- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases

the validator's total stake and improves their chances of being selected to produce blocks. 
-  Shared  Rewards:  Delegators  earn  a  portion  of  the  rewards  that  validators  receive.  This

incentivizes  token  holders  to  participate  in  the  network’s  security  and  decentralization  by
choosing reliable validators. 

3. Candidates: 
Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB

and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience. 

4. Economic Security: 
- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.

Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network. 

-  Opportunity  Cost:  Staking  requires  validators  and  delegators  to  lock  up  their  BNB  tokens,
providing an economic incentive to act honestly to avoid losing their staked assets. 

Fees on the Binance Smart Chain 

1. Transaction Fees: 
- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.

These  fees  are  paid  in  BNB  and  are  essential  for  maintaining  network  operations  and
compensating validators. 

-  Dynamic  Fee  Structure:  Transaction  fees  can  vary  based  on  network  congestion  and  the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet. 

2. Block Rewards: 
Incentivizing  Validators:  Validators  earn  block  rewards  in  addition  to  transaction  fees.  These

rewards are distributed to validators for their role in maintaining the network and processing
transactions. 

3. Cross-Chain Fees: 
Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred

between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience. 

4. Smart Contract Fees: 
Deploying  and  interacting  with  smart  contracts  on  BSC  involves  paying  fees  based  on  the

computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The  crypto-asset's  PoS  system secures  transactions  through  validator  incentives  and  economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees. 
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Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity. 

This  system aims to increase security  by aligning incentives while  making the crypto-asset's  fee
structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
binance_smart_chain,  ethereum is  calculated  first.  For  the  energy  consumption  of  the  token,  a
fraction of the energy consumption of the network is attributed to the token, which is determined
based  on  the  activity  of  the  crypto-asset  within  the  network.  When  calculating  the  energy
consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available -
to determine all implementations of the asset in scope. The mappings are updated regularly, based
on data of the Digital Token Identifier Foundation. The information regarding the hardware used
and the number of participants in the network is based on assumptions that are verified with best
effort using empirical data. In general, participants are assumed to be largely economically rational.
As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e.
making higher estimates for the adverse impacts.

Dao Maker

Quantitative information 

Field Value Unit

S.1 Name CHECKSIG S.R.L. SOCIETA'
BENEFIT /

S.2 Relevant legal entity identifier 8156006C715AAACC5D19 /

S.3 Name of the crypto-asset Dao Maker /

S.6 Beginning of the period to which the disclosure
relates 2024-12-24 /

S.7 End of the period to which the disclosure relates 2025-12-24 /

S.8 Energy consumption 32.04937 kWh/
a

Qualitative information 

S.4 Consensus Mechanism 

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity. 

The  network  operates  on  a  slot  and  epoch  system,  where  a  new block  is  proposed  every  12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
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Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees 

The  crypto-asset's  PoS  system secures  transactions  through  validator  incentives  and  economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees. 

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity. 

This  system aims to increase security  by aligning incentives while  making the crypto-asset's  fee
structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies 

The energy consumption of this asset is aggregated across multiple components:

To  determine  the  energy  consumption  of  a  token,  the  energy  consumption  of  the  network(s)
ethereum is calculated first.  For the energy consumption of  the token,  a fraction of  the energy
consumption of the network is attributed to the token, which is determined based on the activity of
the crypto-asset within the network.  When calculating the energy consumption,  the Functionally
Fungible  Group  Digital  Token  Identifier  (FFG  DTI)  is  used  -  if  available  -  to  determine  all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of  participants  in  the network is  based on assumptions that  are  verified with  best  effort  using
empirical  data.  In  general,  participants  are  assumed  to  be  largely  economically  rational.  As  a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.
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